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One of the most attractive applications of relational programming is inverse computation. It offers an approach
to solving complex problems by transforming verifiers into solvers with relatively low effort. Unfortunately,
inverse computation often suffers from interpretation overhead, leading to subpar performance compared
to direct program inversion. A prior study introduced a functional conversion scheme capable of creating
inversions of miniKanren specifications with respect to a known fixed direction. This paper expands upon it
by providing a semi-automated functional conversion algorithm. Our evaluation demonstrates a significant
performance improvement achieved through functional conversion.

CCS Concepts: • Software and its engineering→ Constraint and logic languages.

Additional Key Words and Phrases: program inversion, inverse computations, relational programming, func-
tional programming, conversion

1 INTRODUCTION

One of the most attractive applications of relational programming is inverse computation. It is
helpful, when the program being inverted is a relational interpreter of some sort: this way an
interpreter for a programming language may be used for program synthesis, a type checker —
to solve type inhabitation problem and so on [3, 4]. Constructing relational interpreters out of
functional implementations can be done automatically by relational conversion [5]. miniKanren
along with relational conversion are capable of inverse computations. However, it is important
to note that inverse computations exhibit lower performance compared to directly executing an
inversion of the original program due to the interpretation overhead [1, 2].

Relational programs do not exist on their own: they are a part of a host program, which utilizes
query results in some way. The host languages are not expected to be able to process logic variables,
nondeterminism and other aspects of relational computations. The host program usually only deals
with a finite subset of answers, which have been reified into a ground representation, meaning
they do not include any logic variables.

When a relation is expected to produce ground answers, and the direction in which it is intended
to be run is known, then it becomes possible to convert it into a function which may execute
significantly faster than its relational counterpart. Performance improvement comes from reducing
interpretation overhead as well as replacing expensive unifications with considerably faster equality
checks, assignments and pattern matches of a host language. An informal functional conversion
scheme was introduced in the paper [9]. We are building upon this research effort, presenting a
semi-automatic functional conversion algorithm and implementation for a minimal core relational
programming language microKanren. This paper focuses on converting to the target languages of
Haskell andOCaml, although other languages can also be considered as potential target languages.
Our evaluation showed performance improvement of 2.5 times for propositional formulas synthesis
and up to 3 orders of magnitude improvement for relations over Peano numbers.
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mail.ru, JetBrains Research, Bremen, Germany; Daniil Berezun, daniil.berezun@jetbrains.com, JetBrains Research, Amster-
dam, Netherlands.
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2 BACKGROUND

In this section, we give the abstract syntax of microKanren version used in this paper and describe
a concept of modes which was developed earlier for other logic languages.

2.1 Normal Form Abstract Syntax of microKanren

To simplify the functional conversion scheme, we consider microKanren relations to be in the
superhomogeneous normal form used in the mercury programming language [7]. Converting an
arbitrary microKanren relation into the normal form is a simple syntactic transformation, which
we omit.

In the normal form, a term is either a variable or a constructor application which is flat and linear.
Linearity means that arguments of a constructor are distinct variables. To be flat, a term should not
contain any nested constructors. Each constructor has a fixed arity 𝑛. Below is the abstract syntax
of the term language over the set of variables 𝑉 .

T𝑉 = 𝑉 ∪ {C𝑛 (𝑥1, . . . , 𝑥𝑛) | 𝑥𝑖 ∈ 𝑉 ; 𝑖 ≠ 𝑗 ⇒ 𝑥𝑖 ≠ 𝑥 𝑗 }
Whenever a term which does not adhere to this form is encountered in a unification or as an

argument of a call, it is transformed into a conjunction of several unifications, as illustrated by the
following examples:

𝐶 (𝑥1, 𝑥2) ≡ 𝐶 (𝐶 (𝑦1, 𝑦2) , 𝑦3) ⇒ 𝑥1 ≡ 𝐶 (𝑦1, 𝑦2) ∧ 𝑥2 ≡ 𝑦3
𝐶 (𝐶 (𝑥1, 𝑥2) , 𝑥3) ≡ 𝐶 (𝐶 (𝑦1, 𝑦2) , 𝑦3) ⇒ 𝑥1 ≡ 𝑦1 ∧ 𝑥2 ≡ 𝑦2 ∧ 𝑥3 ≡ 𝑦3

𝑥 ≡ 𝐶 (𝑦,𝑦) ⇒ 𝑥 ≡ 𝐶 (𝑦1, 𝑦2) ∧ 𝑦1 ≡ 𝑦2
𝑎𝑑𝑑𝑜 (𝑥, 𝑥, 𝑧) ⇒ 𝑎𝑑𝑑𝑜 (𝑥1, 𝑥2, 𝑧) ∧ 𝑥1 ≡ 𝑥2

Unification in the normal form is restricted to always unify a variable with a term. We also
prohibit using disjunctions inside conjunctions. The normalization procedure declares a new
relation whenever this is encountered.
The complete abstract syntax of the microKanren language used in this paper is presented in

figure 1.

D𝑁
𝑉 : 𝑅𝑛 (𝑥1, . . . , 𝑥𝑛) = Disj𝑉 , 𝑥𝑖 ∈ 𝑉 normalized relation definition

Disj𝑉 :
∨ (𝑐1, . . . , 𝑐𝑛) , 𝑐𝑖 ∈ Conj𝑉 normal form

Conj𝑉 :
∧ (𝑔1, . . . , 𝑔𝑛) , 𝑔𝑖 ∈ Base𝑉 normal conjunction

Base𝑉 : 𝑉 ≡ T𝑉 flat unification
| 𝑅𝑛 (𝑥1, . . . , 𝑥𝑛) , 𝑥𝑖 ∈ 𝑉 , 𝑖 ≠ 𝑗 ⇒ 𝑥𝑖 ≠ 𝑥 𝑗 flat call

Fig. 1. Abstract syntax of microKanren in the normal form

2.2 Modes

A mode generalizes the concept of a direction; this terminology is commonly used in the conven-
tional logic programming community. In its most primitive form, a mode specifies which arguments
of a relation will be known at runtime (input) and which are expected to be computed (output).
Several logic programming languages have mode systems used for optimizations, with mercury
standing out among them. mercury1 is a modern functional-logic programming language with a
complicated mode system capable not only of describing directions, but also specifying if a relation
in the given mode is deterministic, among other things [6].
1Website of the mercury programming language: https://mercurylang.org/
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Semi-Automated Direction-Driven Functional Conversion 3

Given an annotation for a relation, mode inference determines modes of each variable of the
relation. For some modes, conjunctions in the body of a relation may need reordering to ensure that
consumers of computed values come after the producers of said values so that a variable is never
used before it is bound to some value. In this project, we employed the least complicated mode
system, in which variables may only have an in or out mode. A mode maps variables of a relation
to a pair of the initial and final instantiations. The mode in stands for 𝑔→ 𝑔, while out stands for
𝑓 → 𝑔. The instantiation 𝑓 represents an unbound, or free, variable, when no information about its
possible values is available. When the variable is known to be ground, its instantiation is 𝑔.

In this paper, we call a pair of instantiations a mode of a variable. figure 2 shows examples of the
normalized microKanren relations with modes inferred for the forward and backward directions.
We use superscript annotation for variables to represent their modes visually. Notice the different
order of conjuncts in the bodies of the add𝑜 relation in different modes.

let double𝑜 x𝑔→𝑔 r𝑓→𝑔 =
addo𝑜 x

𝑔→𝑔

1 x
𝑔→𝑔

2 r𝑓→𝑔 ∧
x
𝑔→𝑔

1 ≡ x
𝑔→𝑔

2

let rec add𝑜 x𝑔→𝑔 y𝑔→𝑔 z𝑓→𝑔 =
(x𝑔→𝑔 ≡ O ∧ y𝑔→𝑔 ≡ z𝑓→𝑔 ) ∨
(x𝑔→𝑔 ≡ S x

𝑓→𝑔

1 ∧
add𝑜 x

𝑔→𝑔

1 y𝑔→𝑔 z
𝑓→𝑔

1 ∧
z𝑓→𝑔 ≡ S z

𝑔→𝑔

1 )

(a) Forward direction

let double𝑜 x𝑓→𝑔 r𝑔→𝑔 =
addo𝑜 x

𝑓→𝑔

1 x
𝑓→𝑔

2 r𝑔→𝑔 ∧
x
𝑔→𝑔

1 ≡ x
𝑔→𝑔

2

let rec add𝑜 x𝑓→𝑔 y𝑓→𝑔 z𝑔→𝑔 =
(x𝑓→𝑔 ≡ O ∧ y𝑓→𝑔 ≡ z𝑔→𝑔 ) ∨
(z𝑓→𝑔 ≡ S z

𝑔→𝑔

1 ∧
add𝑜 x

𝑓→𝑔

1 y𝑓→𝑔 z
𝑔→𝑔

1 ∧
x𝑓→𝑔 ≡ S x

𝑔→𝑔

1 )

(b) Backward direction

Fig. 2. Normalized doubling and addition relations with mode annotations

3 FUNCTIONAL CONVERSION FOR MICROKANREN

In this section, we describe the functional conversion algorithm. The reader is encouraged to first
read the paper [9] on the topic, which introduces the conversion scheme on a series of examples.

Functional conversion is done for a relation with a concrete fixed direction. The goal is to create
a function which computes the same answers as microKanren would, not necessarily in the same
order. Since the search in microKanren is complete, both conjuncts and disjuncts can be reordered
freely: interleaving makes sure that no answers would be lost this way. Moreover, the original order
of the subgoals is often suboptimal for any direction but the one which the programmer had in
mind when they encoded the relation. When the relational conversion is used to create a relation,
the order of the subgoals only really suits the forward direction, in which the relation is often not
intended to be run (in this case, it is better to run the original function).

The mode inference results in the relational program with all variables annotated by their modes,
and all base subgoals ordered in a way that further conversion makes sense. Conversion then
produces functions in the intermediate language. It may then be pretty printed into concrete
functional programming languages, in our case Haskell and OCaml.

3.1 Mode Inference

We employ a simple version of mode analysis to order subgoals properly in the given direction.
The mode analysis makes sure that a variable is never used before it is associated with some value.
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4 Verbitskaia, Engel, Berezun

It also ensures that once a variable becomes ground, it never becomes free, thus the value of a
variable is never lost. The mode inference pseudocode is presented in listing 1.

1 modeInfer (𝑅𝑖
(
𝑥1, . . . , 𝑥𝑘𝑖

)
≡ 𝑏𝑜𝑑𝑦 ) = (𝑅𝑖

(
𝑥1, . . . , 𝑥𝑘𝑖

)
≡ (modeInferDisj body ) )

2
3 modeInferDisj (

∨ (𝑐1, . . . , 𝑐𝑛) ) =
∨(modeInferConj 𝑐1, . . . , modeInferConj 𝑐𝑛)

4
5 modeInferConj (

∧ (𝑔1, . . . , 𝑔𝑛) ) =
6 let (picked , theRest ) = pickConjunct ( [𝑔1, . . . , 𝑔𝑛] ) in
7 let moddedPicked = modeInferBase picked in
8 let moddedConjs = modeInferConj (

∧
theRest ) in

9
∧(moddedPicked : moddedConjs )

10
11 pickConjunct goals =
12 pickGuard goals <|>
13 pickAssignment goals <|>
14 pickMatch goals <|>
15 pickCallWithGroundArguments goals <|>
16 pickUnificationGenerator goals <|>
17 pickCallGenerator goals

Listing 1. Mode inference pseudocode

Mode inference starts by initializing modes for all variables in the body of the given relation
according to the given direction. All variables that are among arguments are annotated with their
in or out modes, while all other variables get only their initial instantiations specified as 𝑓 .
Then the body of the relation is analyzed (see line 1). Since the body is normalized, it can only

be a disjunction. Each disjunct is analyzed independently (see line 3) because no data flow happens
between them.
Analyzing conjunctions involves analyzing subgoals and ordering them. Let us first consider

mode analysis of unifications and calls, and then circle back to the way we order them. Whenever a
base goal is analyzed, all variables in it have some initial instantiation, and some of them also have
some final instantiation. Mode analysis of a base goal boils down to making all final instantiations
ground.
When analyzing a unification, several situations may occur. Firstly, every variable in the uni-

fication can be ground, as in 𝑥𝑔→𝑔 ≡ 𝑂 or in 𝑦𝑔→? ≡ 𝑧𝑔→? (here ? is used to denote that a final
instantiation is not yet known). We call this case guard, since it is equivalent to checking that two
values are the same.

The second case is when one side of a unification only contains ground variables. Depending on
which side is ground, we call this either assignment or match. The former corresponds to assigning
the value to a variable, as in 𝑥 𝑓→? ≡ 𝑆 𝑥

𝑔→𝑔

1 or 𝑥𝑔→𝑔 ≡ 𝑦 𝑓→?. The latter — to pattern matching with
the variable as the scrutinee, as in 𝑥𝑔→𝑔 ≡ 𝑆 𝑥

𝑓→?
1 . Notice that we allow for some variables on the

right-hand side to be ground in matches, given that at least one of them is free.
The last case occurs when both the left-hand and right-hand sides contain free variables. This

does not translate well into functional code. Any free logic variable corresponds to the possibly
infinite number of ground values. To handle this kind of unification, we propose to use generators
which produce all possible ground values a free variable may have.
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We base our ordering strategy for conjuncts on the fact that these four different unification types
have different costs. The guards are just equality checks which are inexpensive and can reduce the
search space considerably. Assignments and matches are more involved, but they still take much
less effort than generators. Moreover, executing non-generator conjuncts first can make some of
the variables of the prospective generator ground thus avoiding generation in the end. This is the
base reasoning which is behind our ordering strategy.
The function pickConjunct selects the base goal which is least likely to blow up the search

space. The right-associative function <|> used in lines 12 through 16 is responsible for selecting
the base goals in the order described. The function first attempts to pick a base goal with its
first argument, and only if it fails, the second argument is called. As a result, pickConjunct first
picks the first guard unification it can find (pickGuard). If no guard is present, then it searches
for the first assignment (pickAssignment), and then for the match (pickMatch). If all unifica-
tions in the conjunction are generators, then we search for relation calls with some ground argu-
ments (pickCallWithGroundArguments). If there are none, then we have no choice but selecting
a generating unification (pickUnificationGenerator) and then a call with all arguments free
(pickCallGenerator).

Once one conjunct is picked, it is analyzed (see line 7). The picked conjunct may instantiate new
variables, thus this information is propagated onto the rest of the conjuncts. Then the rest of the
conjuncts is mode analyzed as a new conjunction (see line 8). If any new modes for any of the
relations are encountered, they are also mode analyzed.

It is worth noticing that any relation can generate infinitely many answers. We cannot judge the
relation to be such generator solely by its mode: for example, the addition relation in the mode
add𝑜 x𝑔→𝑔 y𝑓→𝑔 z𝑓→𝑔 generates an infinite stream, while add𝑜 x𝑓→𝑔 y𝑓→𝑔 z𝑔→𝑔 does not.

3.2 Conversion into Intermediate Representation

To represent nondeterminism, our functional conversion uses the basis of microKanren — the
stream data structure. A relation is converted into a function with 𝑛 arguments which returns a
stream of𝑚-tuples, where𝑛 is the number of the input arguments, and𝑚 — the number of the output
arguments of the relation. Since stream is a monad, functions can be written elegantly in Haskell
using do-notation (see figure 4). We use an intermediate representation which draws inspiration
from Haskell’s do-notation, but can then be pretty-printed into other functional languages. The
abstract syntax of our intermediate language is shown in figure 3. The conversion follows quite
naturally from the modded relation and the syntax of the intermediate representation.

F𝑉 = Sum [F𝑉 ] concatenation of streams
| Bind [( [𝑉 ] , F𝑉 )] monadic bind for streams
| Return [T𝑉 ] return of a tuple of terms
| Guard (𝑉 ,𝑉 ) equality check
| Match𝑉 (T𝑉 , F𝑉 ) match a variable against a pattern
| 𝑅𝑛 ( [𝑉 ] , [𝐺]) function call
| Gen𝐺 generator

Fig. 3. Abstract syntax of the intermediate language F

A body of a function is formed as an interleaving concatenation of streams (Sum), each of which
is constructed from one of the disjuncts of the relation. A conjunction is translated into a sequence
of bind statements (Bind): one for each of the conjuncts and a return statement (Return) in the
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end. A bind statement binds a tuple of variables (or nothing) with values taken from the stream in
the right-hand side.
A base goal is converted into a guard (Guard), match (Match), or function call, depending on

the goal’s type. Assignments are translated into binds with a single return statement on the right.
Notice, that a match only has one branch. This branch corresponds to a unification. If the scrutinee
does not match the term it is unified with, then an empty stream is returned in the catch-all branch.
If a term in the right-hand side of a unification has both out and in variables, then additional guards
are placed in the body of the branch to ensure the equality between values bound in the pattern
and the actual ground values.
Generators (Gen) are used for unifications with free variables on both sides. A generator is a

stream of possible values for the free variables, and it is used for each variable from the right-
hand side of the unification. The variable from the left-hand side of the unification is then simply
assigned the value constructed from the right-hand side. Our current implementation works with
an untyped deeply embedded microKanren, in which there is not enough information to produce
generators automatically. We decided to delegate the responsibility to provide generators to the
user: a generator for each free variable is added as an argument of the relation. When the user is to
call the function, they have to provide the suitable generators.

4 EXAMPLES

In this section, we provide some examples which demonstrate mode analysis and conversion results.

4.1 Multiplication Relation

Figure 4 shows the implementation of the multiplication relation mul𝑜 , the mode analysis result for
mode mul𝑜 x𝑓→𝑔 y𝑔→𝑔 z𝑔→𝑔 , and the results of functional conversion into Haskell and OCaml.

Note that the unification comes last in the second disjunct. This is because before the two relation
calls are done, both variables in the unification are free. Our version of mode inference puts the
relation calls before the unification, but the order of the calls depends on their order in the original
relation. There is nothing else our mode inference uses to prefer the order presented in the figure
over the opposite: mul𝑜 x𝑓→𝑔

1 y𝑔→𝑔 z
𝑓→𝑔

1 ∧ add𝑜 y𝑔→𝑔 z
𝑔→𝑔

1 z𝑔→𝑔. However, it is possible to derive
this optimal order, if determinism analysis is employed: add𝑜 y𝑔→𝑔 z

𝑓→𝑔

1 z𝑔→𝑔 is deterministic while
mul𝑜 x

𝑓→𝑔

1 y𝑔→𝑔 z
𝑓→𝑔

1 is not. Putting nondeterministic computations first makes the search space
larger, and thus should be avoided if another order is possible.

Functional conversions in both languages are similar, modulo the syntax. The Haskell version
employs do-notation, while we use let-syntax in the OCaml code. Both are syntactic sugar for
monadic computations over streams. We use the following convention to name the functions:
we add a suffix to the relation’s name whose length is the same as the number of the relation’s
arguments. The suffix consists of the letters I and O which denote whether the argument in the
corresponding position is in or out. The function msum uses the interleaving function mplus to
concatenate the list of streams constructed from disjuncts. To check conditions, we use the function
guard which fails the monadic computation if the condition does not hold. Note that even though
patterns for the variable x0 in the function addoIOI are disjunct in two branches, we do not
express them as a single pattern match. Doing so would improve readability, but it does not make a
difference when it comes to the performance, according to our evaluation.

4.2 The Mode of Addition Relation which Needs a Generator

Consider the example of the addition relation in mode add𝑜 x𝑔→𝑔 y𝑓→𝑔 z𝑓→𝑔 presented in figure 5.
The unification in the first disjunct of this relation involves two free variables. We use a generator
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let rec mul𝑜 x y z = conde [
(x ≡ O ∧ z ≡ O ) ;
( fresh (x1 z1 )
(x ≡ S x1 ∧
add𝑜 y z1 z ∧
mul𝑜 x1 y z1 ) ) ]

(a) Implementation in miniKanren

let rec mul𝑜 x𝑓→𝑔 y𝑔→𝑔 z𝑔→𝑔 =
(x𝑓→𝑔 ≡ O ∧ z𝑔→𝑔 ≡ O ) ∨
(add𝑜 y𝑔→𝑔 z

𝑓→𝑔

1 z𝑔→𝑔 ∧
mul𝑜 x

𝑓→𝑔

1 y𝑔→𝑔 z
𝑔→𝑔

1 ∧
x𝑓→𝑔 ≡ S x

𝑔→𝑔

1 )

(b) Mode inference result

muloOII x1 x2 = msum
[ do { let {x0 = O }

; guard (x2 == O )
; return x0 }

, do { x4 ← addoIOI x1 x2
; x3 ← muloOII x1 x4
; let {x0 = S x3 }
; return x0 } ]

addoIOI x0 x2 = msum
[ do { guard (x0 == O )

; let {x1 = x2 }
; return x1 }

, do { x3 ← case x0 of
{ S y3 → return y3
; _ → mzero }

; x4 ← case x2 of
{ S y4 → return y4
; _ → mzero }

; x1 ← addoIOI x3 x4
; return x1 } ]

(c) Functional conversion into Haskell

let rec muloOII x1 x2 = msum
[ ( let ∗ x0 = return O in

let ∗ _ = guard (x2 = O ) in
return x0 )

; ( let ∗ x4 = addoIOI x1 x2 in
let ∗ x3 = muloOII x1 x4 in
let ∗ x0 = return (S x3 ) in
return x0 ) ]

and addoIOI x0 x2 = msum
[ ( let ∗ _ = guard (x0 = O ) in

let ∗ x1 = return x2 in
return x1 )

; ( let ∗ x3 = match x0 with
| S y3 → return y3
| _ → mzero in

let ∗ x4 = match x2 with
| S y4 → return y4
| _ → mzero in

let ∗ x1 = addoIOI x3 x4 in
return x1 ) ]

(d) Functional conversion into OCaml

Fig. 4. Multiplication relation

gen_addoIIO_x2 to generate a stream of ground values for the variable z which is passed into the
function addIIO as an argument. It is up to the user to provide a suitable generator. One of the
possible generators which produces all Peano numbers in order and an example of its usage are
presented in figure 5b.
The generators which produce an infinite stream should be inverse eta-delayed in OCaml and

other non-lazy languages. Otherwise, the function would not terminate trying to eagerly produce
all possible ground values before using any of them.
It is possible to automatically produce generators from the data type of a variable, but it is

currently not implemented, as we work with an untyped version of microKanren.

5 EVALUATION

To evaluate our functional conversion scheme, we implemented the proposed algorithm inHaskell.
We compared execution time of several OCanren relations in different directions against their
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let rec add𝑜 x𝑔→𝑔 y𝑓→𝑔 z𝑓→𝑔 =
(x𝑔→𝑔 ≡ O ∧ y𝑓→𝑔 ≡ z𝑓→𝑔 ) ∨
(x𝑔→𝑔 ≡ S x

𝑓→𝑔

1 ∧
add𝑜 x

𝑔→𝑔

1 y𝑓→𝑔 z
𝑓→𝑔

1 ∧
z𝑓→𝑔 ≡ S z

𝑔→𝑔

1 )

(a) Mode inference result

genNat = msum
[ return O
, do { x ← genNat

; return (S x ) } ]
runAddoIIO x = addoIIO x genNat

(b) Generator of Peano numbers

addoIOO x0 gen_addoIOO_x2 = msum
[ do { guard (x0 == O )

; (x1 , x2 ) ← do { x2 ← gen_addoIOO_x2 ; return (x2 , x2 ) }
; return (x1 , x2 ) }

, do { x3 ← case x0 of { S y3 → return y3 ; _ → mzero }
; (x1 , x4 ) ← addoIOO x3 gen_addoIOO_x2
; let {x2 = S x4 } ; return (x1 , x2 ) } ]

(c) Functional conversion

Fig. 5. Addition relation when only the first argument is in

functional counterparts in the OCaml language. Here we showcase two relational programs and
their conversions. The implementation of the functional conversion2 as well as the execution code3
can be found on Github.

5.1 Evaluator of Propositional Formulas

In this example, we converted a relational evaluator of propositional formulas: see figure 6. It
evaluates a propositional formula fm in the environment st to get the result u. A formula is either a
boolean literal, a numbered variable, a negation of another formula, a conjunction or a disjunction
of two formulas. Converting it in the direction when everything but the formula is in (see figure 6a),
allows one to synthesize formulas which can be evaluated to the given value. The conversion of
this relation does not involve any generators and is presented in figure 6b.

We ran an experiment to compare the execution time of the relational interpreter vs. its functional
conversion. In the experiment, we generated from 1000 to 10000 formulas which evaluate to true and
contain up to 3 variables with known values. The results are presented in figure 7. The functional
conversion improved execution time of the query about 2.5 times from 724𝑚𝑠 to 291𝑚𝑠 for retrieving
10000 formulas.

5.2 Multiplication

In this example, we converted the multiplication relation in several directions and compared them
to the relational counterparts: see figure 8. Functional conversion significantly reduced execution
time in most directions.
In the forward direction, we run the query mul𝑜 n 10 q with n in the range from 100 to 1000,

and the functional conversion was 2 orders of magnitude faster: 927𝑚𝑠 vs 9.4𝑚𝑠 for the largest n,
see figure 8a. In the direction which serves as division we run the query mul𝑜 (n /10) q n with n
ranging from 100 to 1000. Here, performance improved 3 orders of magnitude: from 24𝑠 to 0.17𝑠 for
2The repository of the functional conversion project https://github.com/kajigor/uKanren_transformations
3Evaluation code https://github.com/kajigor/miniKanren-func
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let rec eval𝑜 st𝑔→𝑔 fm𝑓→𝑔 u𝑔→𝑔 =
( fm𝑓→𝑔 ≡ Lit u𝑔→𝑔 ) ∨
( elem𝑜 z𝑓→𝑔 st𝑔→𝑔 u𝑔→𝑔 ∧
fm𝑓→𝑔 ≡ Var z𝑔→𝑔 ) ∨

( not𝑜 v𝑓→𝑔 u𝑔→𝑔 ∧
eval𝑜 st𝑔→𝑔 x𝑓→𝑔 v𝑔→𝑔 ∧
fm𝑓→𝑔 ≡ Neg x𝑔→𝑔 ) ∨

( or𝑜 v𝑓→𝑔 w𝑓→𝑔 u𝑔→𝑔 ∧
eval𝑜 st𝑔→𝑔 x𝑓→𝑔 v𝑔→𝑔 ∧
eval𝑜 st𝑔→𝑔 y𝑓→𝑔 w𝑔→𝑔 ∧
fm𝑓→𝑔 ≡ Disj x𝑔→𝑔 y𝑔→𝑔 ) ∨

( and𝑜 v𝑓→𝑔 w𝑓→𝑔 u𝑔→𝑔 ∧
eval𝑜 st𝑔→𝑔 x𝑓→𝑔 v𝑔→𝑔 ∧
eval𝑜 st𝑔→𝑔 y𝑓→𝑔 w𝑔→𝑔 ∧
fm𝑓→𝑔 ≡ Conj x𝑔→𝑔 y𝑔→𝑔 ) ∨

(a) Mode inference result

evaloIOI x0 x2 = msum
[ do { let {x1 = Lit x2 }

; return x1 }
, do { x7 ← elemoOII x0 x2

; let {x1 = Var x7 }
; return x1 }

, do { x5 ← notoOI x2
; x3 ← evaloIOI x0 x5
; let {x1 = Neg x3 }
; return x1 }

, do { (x5 , x6 ) ← oroOOI x2
; x3 ← evaloIOI x0 x5
; x4 ← evaloIOI x0 x6
; let {x1 = Disj x3 x4 }
; return x1 }

, do { (x5 , x6 ) ← andoOOI x2
; x3 ← evaloIOI x0 x5
; x4 ← evaloIOI x0 x6
; let {x1 = Conj x3 x4 }
; return x1 } ]

(b) Functional conversion

Fig. 6. Evaluator of propositional formulas

number of formulas

tim
e 

(m
ill

is
ec

on
ds

)

0

200

400

600

800

2000 4000 6000 8000 10000

relational functional

Fig. 7. Execution time of the evaluators of propositional formulas, eval [ true ; false ; true ] q true

the largest n, see figure 8b. Even more impressive was the backward direction mul𝑜 x𝑓→𝑔 y𝑓→𝑔 z𝑔→𝑔 .
Querying for all 16 pairs of divisors of 1000 (mul𝑜 q r 1000) took OCanren about 32.9𝑠 , while the
functional conversion succeeded in 1.1𝑠 .

What was surprising was the mode mul𝑜 x𝑔→𝑔 y𝑓→𝑔 z𝑓→𝑔 . In this case, the functional conversion
was not only worse than its relational counterpart, its performance degraded exponentially with

miniKanren’23
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(a) Multiplication: mulo n 10 q
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(b) Division: mulo (n /10) q n
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(c) Generation: take n (mulo 10 q r )

let rec mul𝑜 x𝑔→𝑔 y𝑓→𝑔 z𝑓→𝑔 =
(x𝑔→𝑔 ≡ O ∧ z𝑓→𝑔 ≡ O ) ∨
(x𝑔→𝑔 ≡ S x

𝑓→𝑔

1 ∧
add𝑜 y𝑓→𝑔 z

𝑓→𝑔

1 z𝑓→𝑔 ∧
mul𝑜 x

𝑔→𝑔

1 y𝑔→𝑔 z
𝑔→𝑔

1 )

(d) Inefficient mode

let rec mul𝑜 x𝑔→𝑔 y𝑓→𝑔 z𝑓→𝑔 =
(x𝑔→𝑔 ≡ O ∧ z𝑓→𝑔 ≡ O ) ∨
(x𝑔→𝑔 ≡ S x

𝑓→𝑔

1 ) ∧
mul𝑜 x

𝑔→𝑔

1 y𝑓→𝑔 z
𝑓→𝑔

1 ∧
add𝑜 y𝑔→𝑔 z

𝑔→𝑔

1 z𝑓→𝑔 )

(e) Efficient mode

Fig. 8. Execution times of the multiplication relation

the number of answers asked. It took almost 1450𝑚𝑠 to find the first 7 pairs of numbers q and r
such that 10 ∗ q = r, while OCanren was able to execute the query in 0.74𝑚𝑠 (see figure 8c). The
source of this terrible behavior was the suboptimal order of the calls in the second disjunct of the
mul𝑜 relation in the corresponding mode (see figure 8d). In this case, the call add𝑜 y𝑓→𝑔 z

𝑓→𝑔

1 z𝑓→𝑔

is put first, which generates all possible triples in the addition relation before filtering them by the
call mul𝑜 x𝑔→𝑔

1 y𝑔→𝑔 z
𝑔→𝑔

1 . The other order of calls is much better (see figure 8e): it is an order of
magnitude faster than its relational source. To achieve the better of these two orders automatically,
we delay picking any call with all arguments free. It is not clear if these heuristics are universal.
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5.3 Deterministic Directions

Running in some directions, relations produce deterministic results. For example, any forward
direction of a relation created by the relational conversion produces a single result, since it mimics
the original function. The guard directions are semi-deterministic: they may fail, but if they succeed,
they produce a single unit value. If the addition relation is run with one of the first two arguments
out, it acts as subtraction and is also deterministic.
For such directions, there is no need to model nondeterminism with the Stream monad. Semi-

determinism can be expressed with a Maybe monad, while deterministic directions can be converted
into simple functions. Our implementation of functional conversion only restricts the computations
to be monadic, it does not specify which monad to use. By picking other monads, we can achieve
performance improvement. For example, using Maybe for division reduces its execution time 30
times in addition to the 2 orders of magnitude improvement from the functional conversion itself:
see figure 9
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Fig. 9. Execution time of division: take n (mul q 10 1000)

6 DISCUSSION

Our experiments indicated that the functional conversion is capable of improving performance
of relational computations significantly in the known directions. The improvement stems from
eliminating costly unifications in favor of the cheaper equality checks and pattern matches. Besides
this, we employed some heuristics which push lower-cost computations to happen sooner while
delaying higher-cost ones. It is also possible to take into account determinism of some directions
and improve performance of them even more by picking an appropriate monad.

It is not currently clear if the heuristics we used are universal enough. However, it is always safe
to run any deterministic computations because they never increase the search space. We believe
that it is necessary to integrate determinism check in the mode analysis so that the more efficient
modes such as the one presented in figure 8e could be achieved more justifiably.
We also think that further integration with specialization techniques such as partial deduction

may benefit the conversion even more [8]. For example, the third argument of the propositional
evaluator can be either true or false . Specializing the evaluator for these two values may help to
shave off even more time.

miniKanren’23
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7 CONCLUSION AND FUTUREWORK

In this paper, we described a semi-automatic functional conversion of a microKanren relation with
a fixed direction into a functional language. We implemented the proposed conversion and applied
it to a set of relations, resulting in significant performance enhancement, as demonstrated in our
evaluation. As part of the future work, we plan to augment the mode analysis with a determinism
check. We also plan to integrate the functional conversion with specialization techniques such as
partial deduction.
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