A New Higher-order Unification Algorithm for AKanren

WEIXI MA, Indiana University
DANIEL P. FRIEDMAN, Indiana University

AKanren, adapted from AProlog, extends miniKanren with higher-order logic programming. The existing
higher-order unification algorithms, however, are neither sound nor complete w.r.t. an “intuitive” under-
standing of @-equivalence. This paper shows these gaps and proposes a new method to handle a-equivalence
in higher-order unification.

ACM Reference Format:
Weixi Ma and Daniel P. Friedman. 2021. A New Higher-order Unification Algorithm for AKanren. 1, 1 (Au-
gust 2021), 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 BACKGROUND

Is there a world where true is equal to false? Indeed, there is, if higher-order unification [13] and
miniKanren [9] meet each other. Even if all components are already well-established, it may still
end up with unnatural or even absurd results, if we combine them naively. This paper unveils the
difficulties in handling binders with standard higher-order unification. To solve these problems,
we propose a new unification formulation.

Higher-order unification [13] solves equations among A-terms modulo afn-equivalence [3].
Miller [19] finds a decidable fragment of higher-order unification problems by restricting the ap-
plication forms of the input terms. For an application form F g, if F is a unification variable, then a
must be a list of zero or more distinct bound variables. Such restricted application forms are called
patterns and we hereafter refer to the problem identified by Miller as pattern unification.

Pattern unification then becomes the core of AProlog [20]. AProlog implements a more expres-
sive logic [21] than Prolog does. Thanks to higher-order unification, AProlog also extends Prolog
with binding structures and the ability to identify afn-equivalence among these binding structures.
With such extensions, AProlog is a powerful tool for metaprogramming and theorem proving.

On the other hand, miniKanren [9] is a school of logic programming languages that focuses on
simplicity, as well as the purity of functions and relations. It rebuilds and demystifies the essence
of Prolog. 40 lines of code [11] are enough to build the core of miniKanren. With their emphasis on
pedagogy, miniKanren is an ideal tool for beginners to learn logic programming and for experts
to experiment using new ideas to enhance the language itself.

If a miniKanren language can rebuild and demystify AProlog, then, we believe, this joining
of forces could yield a significant improvement to the logic programming community. Just as
miniKanren is taught in undergraduate level courses, a “AKanren” may greatly open up the study
of higher-order logic programming. Other than in a workshop paper [17], higher-order logic pro-
gramming remains unexplored by the miniKanren community.

Authors’ addresses: Weixi Ma, mvc@iu.edu, Indiana University; Daniel P. Friedman, dfried00@gmail.com, Indiana Univer-
sity.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

XXXX-XXXX/2021/8-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: August 2021.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Weixi Ma and Daniel P. Friedman

We show, in Sections 2 and 3, the obstacles to extend miniKanren with higher-order logic pro-
gramming. To solve these difficulties, in section 4, we propose a new higher-order unification
formulation and its algorithm. This algorithm is the heart of AKanren, a new member that brings
higher-order logic programming to the Kanren family. Last but not least, section 6 concludes this
paper with related work.

2 GRAFTING OR SUBSTITUTION?

miniKanren provides intuitive operators. In the following, run corresponds to the existential quan-
tifier. ! This query asks if there exists one variable X (hereafter capitalized letters are used for unifi-
cation variables) that is equal to the constant 'cat. miniKanren answers with a list of one element
that is 'cat.

> (run 1 X
== X 'cat))
"(cat)

This query succeeds. Internally, the answer is a grafting, a pure textual replacement, resulting
from unifying X and 'cat, written as {X +— 'cat}.

Next, binding structures are the first step towards higher-order logic programming. Let’s intro-
duce the A operator to our language. Then AKanren should be able to handle the following query.

> (run 1 X
== (4 (a) a) (4 (b) b))
'(_9)

This query succeeds. Here Aa.a and Ab.b can be unified because they are a-equivalent. And
AKanren answers with a list with one element. This element is _0, a way to express that variable X
is not restricted.

Out of curiosity, a novice in higher-order logic programming may try to explore more interesting
queries, such as the following, 2

> (run 1 X

== (X (a) X) (A (b) b))

Does this query succeed? If the function body of the first term is a unification variable, what
should X be to make the two terms equal? The variable that corresponds to the same binder, a,
must be the answer for any newcomer to A-calculus with a basic understanding of a-equivalence.

Surprisingly enough, with higher-order unification, there is no answer.

> (run 1 X

This query fails. Under any existing higher-order unification algorithm, X and a cannot be unified
due to the scope restrictions.

In miniKanren, fresh is the existential quantifier. run is an interface operator that starts computing a query and is imple-
mented using fresh. To focus on our discussion on binders, we do not signify their difference.

2We use solid boxes for examples that are complete and dash boxes for examples that are incomplete or somewhat
questionable.

, Vol. 1, No. 1, Article . Publication date: August 2021.

A New Higher-order Unification Algorithm for AKanren 3

Standard higher-order unification relies on substitution, but not grafting, to instantiate unifica-
tion variables. Substitution is capture-avoiding, whereas grafting is not. If we take the following
example into account, it makes some sense to disallow associating X and a (with either grafting or
substitution).

i > (run 1 X i
: == (1 (a) X) (A (b) b)) 1
: == (A (c) X) (A (d) d)))

This example is an implicit conjunction between two equations. It asks for at most one answer,
if there exists one, as run 1 suggests. Associating X with a cannot work, neither does c. If we
text-replace X with either, then the other one fails.

Higher-order unification implements this restriction with scopes. Unification variables are 3-
quantified and lambda variables are V-quantified. A scope is a list of those quantifiers. Further, a
V-quantified variable may instantiate (or occurs in the instantiation of) an 3-quantified variable,
only if the V variable precedes the 3 variable in the scope.

In the above example that fails, the V-quantified a does not precede the 3-quantified X. Its scope
is '((3 X) (VY a)).So, a cannot instantiate X.

But, do we really want this? This failure is counter-intuitive. For beginners who are not familiar
with higher-order unification, a-equivalence is only decided by the binder positions. But pattern
unification imposes an appendage limitation by taking unification variables into account. It is fair
to say that the existing pattern unification algorithms are not complete w.r.t. the natural sense of
a-equivalence.

We first propose to treat unification variables and lambda variables differently. In particular,
lambda variables are effectively constants if they are represented by de Bruijn levels [7] (hereafter
levels). E.g., instead of ' (), AKanren may return ' (d@), an answer that suggests “these two terms
can be made a-equal, if X corresponds to de Bruijn level 0”

> (run 1 X

== (A (a) X3 (4 (b) b)))
'(de)

By mapping unification variables to de Bruijn levels, grafting no longer imposes the problem of
capturing. Consider the previously-failed example: X may correspond to de Bruijn level 0 in both

Aa.X z Ab.b and Ac. X z Ad.d. And AKanren would result in a success with ' (do).

> (run 1 X
== (4 (a) X) (4 (b) b))
== (A (c) X) (4 (d) d)))
' (do)

If we instantiate X with do and reify these levels w.r.t. their binders, we have the problem solved
with no surprise.

== (A (a) a) (A (b) b))
== (A (c) c) (A (d) d))

After all, using grafting with de Bruijn levels captures the essence of a-equivalence: names don’t
matter. A unification algorithm based on de Bruijn levels would also be more straightforward

, Vol. 1, No. 1, Article . Publication date: August 2021.

4 Weixi Ma and Daniel P. Friedman

because it’s practically first-order. But, we cannot yet lift the scope restriction on lambda variables
and drop in de Bruijn levels, because sometimes names do matter and ...

3 ... WECANTURN FALSE TO TRUE

Here we are concerned about an implementation technique that has been used in all pattern unifica-
tion algorithms, except for those with de Bruijn numbers. > We call this technique binder-merging.

When two terms are unified, one term’s binders are replaced by the other’s. Then a-equivalence
is as simple as structural equivalence, e.g. unifying

Ax. Ay Xxy Z Aa.\b.ab
is reduced to unifying

Aa.b.Xab = Ja.Ab.ab
and then solved by {X + Aa.Ab.ab}. Instantiating X gives

AaAb.((AaAb.ab)ab) = AaAb.ab
that f-reduces to the following.
la.\b.ab = da.Ab.ab

As convenient as it is, binder-merging does not handle the name shadowing problem. This is
overlooked by all pattern unification algorithms. Algorithms that use what we call binder-merging
state upfront that they don’t consider name shadowing, e.g. Nipkow and Prehofer [25], Qian [32].

Take the following program.

> (run 1 X

(== (4 (@) (4 (a) X)) (4 () (A (d) ¢))))

With either binder-merging or de Bruijn syntax, the unification problem is effectively reduced to
the following.

deAd X £ dedd.c
Then it appears to be solvable by {X + c}, or equivalently {X + d@}, that associates X with the

outer-binder. If we instantiate the unification variables in the original problem and naively reify
de Bruijn levels with concrete names, then we have the following,

! (== (4 (@) (4 (a) a)) (A4 (c) (4 (d) ©))) !

which claims that the A-encoded false is true!
The name shadowing problem has wide impact. The next example shows that binder-merging
could go wrong even without lifting the scope restrictions.

AxAy.xy Z Aala.aa

is converted to
lala.aa = dala.a a,
which then ends up with another false positive.

Current solutions use either a pre-processor that adds gensyms to lambda variables to make
each individual unique or a smart reifier that detects name shadowing. One downside is that the
randomly-generated symbols are not pleasantly-readable. Also, these extra processors demand
extra complexity, as to both runtime speed and implementation technique.

3There are two ways to implement de Bruijn’s nameless syntax, indices and levels. Both use numbers to represent variables.

, Vol. 1, No. 1, Article . Publication date: August 2021.

A New Higher-order Unification Algorithm for AKanren 5

t w= X unification variable
| tt function application
| Aa.t named-binder
| a name
| At nameless-binder
| t level

¢ == €l|a ¢ scope
k u= (¢;t) static closure

Fig. 1. Terms, scopes, and static closures

4 STATIC CLOSURES, THE SOLUTION TO NAME SHADOWING

We propose a simple and efficient alternative, static closures. Static closures are integrated into
the unification process and they decide a-equivalence while correctly handling name shadowing.
We obtain a new algorithm by extending traditional pattern unification with static closures. This
algorithm is formulated differently from the previous ones, since it uses a mixture of named and
nameless syntax, as introduced in Fig. 1. The nameless syntax, i.e., nameless-binders and levels are
derived during unification.

A static closure is a pair of a scope and a unification term. A scope is a list of binders. In essence,
a static closure captures the surrounding binders of a term. E.g., the term Aa.Ab.X reduces to the
static closure (a, b; X).

Static closures support the following operations:

e ext(¢$, a) adds the name a to the scope ¢. If a has been previously added to ¢, then this
older one is shadowed and its corresponding level becomes unusable.

e db(¢, a)isJust £ where ¢ is the de Bruijn level of a w.r.t the scope ¢, if a is not shadowed
in ¢; otherwise, the result is Nothing.

e db(¢, ¢)is Just ¢,if £ is available in ¢; otherwise, the result is Nothing.

Example 1. Consider the following unification problem.
Aa.Ab.X £ dedd.c
The problem is reduced to comparing two static closures.
(a.b; X) = (c.ds)
We first apply db on the right-hand side.
(a,b; X) £ Just 0
Then we try to solve X by applying db on the scope of the left-hand side and 0.
Just @ = Just @
It works. So, the solution is {X + do}.
Example 2. Consider another example with name shadowing:

Aada.X = deAd.c

is reduced to
(a,a; X) = (c,d; c).

, Vol. 1, No. 1, Article . Publication date: August 2021.

6 Weixi Ma and Daniel P. Friedman

Definitions D GD>DD|DAD|VxD
Goals G == GAG|GVG|3IxG|DD>G|VxG

Fig. 2. Horn Clauses and Hereditary Harrop Formulas

We first apply db on the right-hand side.

{a,a; X) L Just 0

Next, try to solve X by applying db on the scope of the left-hand side and 0. This time, db({a, a; 0))
is Nothing because the outer binder a is shadowed.

Nothing z Just 0
And we know the unification fails.

Example 3. Some solvability cannot be immediately decided, e.g.,

AaAb.X = deAd.Y

becomes an equation between two static closures of unification variables.

(a,b; X) £ (c.d; Y)

Here, the grafting itself is not able to describe the solution. Now our solution needs a context: the
set of equations between static closures of unification variables. This problem has the solution:

the grafting being empty and the context being {(a, b; X) L (c,d; Y)}. Practical problems, such as
type checking, involve solving many unification problems. The accumulated equations between
closures of one unification problem are usually solved and reduced to grafting, during the unifica-
tion on other problems.

5 A SHALLOW EMBEDDING IMPLEMENTATION OF AKANREN

Besides the unification algorithm, the underlying logic of AProlog is more expressive than Prolog’s.
Prolog (and miniKanren) implements Horn Clauses [2] while the underlying logic of AProlog is
Hereditary Harrop Formulas [21]. Fig. 2 illustrates these two logics. The dimmed part is their
overlap and the non-dimmed part is from Hereditary Harrop Formulas only. This section reviews
such language extensions of AKanren, introduced in Ma et al. [17].

miniKanren also implements first-order Horn clauses. As shown in the previous sections, the
host language uses run to introduce goals with some existentially quantified variables (3xG). Be-
sides, conjunctions (GAG) are implicit and disjunctions (GVG) use miniKanren’s cond® operator.

For example, the formula

AXFY (X =YAX ="cat)V(X = "'cat AY = 'dog))

corresponds to the following program.

> (run* (X Y)

(cond®
[(== X Y) (== X 'cat)]
[(== X ’'cat) (== "dog) 1))

"((cat cat) (cat dog))

, Vol. 1, No. 1, Article . Publication date: August 2021.

A New Higher-order Unification Algorithm for AKanren 7

On the other hand, miniKanren introduces definitions by defining a function in its host language.
These definitions are universal quantifiers with implicit implications. E.g.,

VX (X ="'()) > (empty? X)

can be translated to the following miniKanren program.

(define (empty? X)
(==X "0»N

AKanren relies on two new operators, implicational goals and universally quantified goals, to
express Hereditary Harrop Formulas.

o Implicational goals are implemented with the operator assume that introduces hypotheses
in its clause. As an example, we may use the assume operator to temporarily extend the ==
relation.

>(run 2 X
(assume (== 'apple 'orange)
== 'apple X)))
'(apple orange)

o The all operator introduces universally quantified goals. E.g., we may synthesize a function
that yields whatever it takes in, using the following,.

>(run 1 F
(all (A)
(== A (F A
'"((lambda (_0) _0))

e Asinthe previous example, the == operator recognizes f-equivalence. Indeed, it will be pow-
ered by the unification algorithm proposed in the last section and recognize af-equivalence.

6 RELATED WORK

The related work can be categorized using three tracks: variations of higher-order unification al-
gorithms, logic programming languages that extend first-order logic, and nominal unification.

6.1 Higher-order unification algorithms
Higher-order unification emerged during the search of automated theorem proving of higher-order
logic, i.e., logic with quantifiers over sets and functions. In the setting of A-calculus, higher-order
unification solves equations modulo afn-equivalence. Since ff-conversion is a powerful and com-
plicated reduction, it is not surprising that higher-order unification is not decidable. This is proved
by Huet [12] and Lucchesi [16], independently.

Undecidability does not get in the way of practicality. Many applications [8, 28, 29] have been
built on Huet [12]’s semi-decidable algorithm. This algorithm has introduced two core ideas of
higher-order unification algorithms.

o Rigid and flex terms. A term is called rigid if its head symbol is a bound variable or a constant.
A term is called flex if its head symbol is a unification variable. Being flexible is in the sense
that the term can be removed through a substitution (or a grafting).

, Vol. 1, No. 1, Article . Publication date: August 2021.

8 Weixi Ma and Daniel P. Friedman

e Elementary substitution. Each unification variable should capture all its visible bound vari-
ables, e.g. in Aag ...Aa;(h(Xo ag ...a;)...(Xj aq ...a;)), each X, should take every a as input, so
it doesn’t lose any information.

The first decidable fragment, discovered by Miller [19], then becomes the foundation of the later
research on higher-order unification. Qian [32] has claimed a result, modified from Miller’s algo-
rithm, that runs in linear time, although Qian’s algorithm has not been implemented. Hardin et al.
[10] have added explicit substitution with de Bruijn numbers to Miller’s algorithm to improve its
efficiency. The latter one results in practical implementations, such as in Pfenning and Schiirmann
[30].

Besides, Nipkow [23] introduces a functional version of Miller’s algorithm. It is appreciated for
its simplicity and shows its practicality in proof assistants [24].

Higher-order unification is also a critical component of building dependent typed languages
for two reasons: (1) f-conversion is involved during type checking, and (2) unification is needed
to elaborate a user-friendly surface language to a cumbersome core language. As examples, the
elaborates of Agda [26] and Beluga [31] adapt Miller’s algorithm for dependent types [1]. As Agda
uses de Bruijn numbers in its core language [26], it suffers from the name shadowing problem
mentioned above and must make all variable names unique in a “gensym” manner. Doing so bloats
type checking with randomly generated symbols and makes the error messages painful to read.

6.2 Extending logic programming languages

AProlog is well-equipped for building theorem provers and programming languages, as it provides
a natural integration of af-conversion. It is also a theorem prover with the built-in capability of
proof search. Miller and Nadathur [20] provides a comprehensive introduction to AProlog, using
an implementation called Teyjus[35]. Makam [33] is a refined version that lifts some restrictions in
Teyjus. Stampoulis and Chlipala [34] demonstrate how Makam makes it easier to build complicated
type systems.

Unlike the Prolog languages, which are implemented by writing interpreters or compilers, the
Kanren languages feature shallow embedding. Instead of building everything from the ground up,
language objects are represented by functions and macros of a host language. Shallow embedding
enables fast prototyping and reuses the developers tools of the host language.

aKanren [4] shows the convenience of shallow embedding. It extends miniKanren with nominal
unification [36] and the whole language is implemented within a few hundred lines of code. Its
practicality is shown by Near et al. [22] that uses it to build a theorem prover.

6.3 Nominal Unification

Nominal unification [36] extends first-order unification with a-equivalence. It handles variable
names with swappings, a list of name pairs.

Nominal unification and pattern unification are equally expressive. Cheney [6] shows that pat-
tern unification problems can be reduced to nominal unification. Later, Levy and Villaret [14]
introduces the reduction from nominal unification to pattern unification.

As pattern unification is decidable in linear time [32], many are seeking a linear time bound of
nominal unification. Yet O(n?) is the state-of-the-art. Levy and Villaret [14]’s reduction to pattern
unification is quadratic, which is the first proof of O(n?). Later, Levy and Villaret [15] and Calveés
[5] independently find more quadratic results, building on advances of Paterson and Wegman [27]
and Martelli and Montanari [18].

, Vol. 1, No. 1, Article . Publication date: August 2021.

A New Higher-order Unification Algorithm for AKanren 9

7 CONCLUSION AND FUTURE GOALS

Extending miniKanren with higher-order programming is a non-trivial endeavor. Our concern is
that higher-order unification algorithms consist of many surprises in a-equivalence. In this regard,
we have proposed static closures, a new means to handle binding structures. Static closures use a
mixture between the ordinary A-syntax and de Bruijn’s nameless syntax.

This paper shows a preview of static closures. We anticipate extending the formulation of higher-
order unification with static closures and derive a sound and complete algorithm for a-equivalence.

REFERENCES

(1]

—_ ——
~N N G
—

(11

—

[12]

(13

—

[14]
[15]
[16]

[17]
[18]
[19]
[20]
[21]
[22]

[23]

Andreas Abel and Brigitte Pientka. 2011. Higher-order Dynamic Pattern Unification for Dependent Types and Records.
In Proceedings of the 10th International Conference on Typed Lambda Calculi and Applications (TLCA’11). Springer-
Verlag, Berlin, Heidelberg, 10-26.

Krzysztof R. Apt and M. H. van Emden. 1982. Contributions to the Theory of Logic Programming. Journal of the ACM
(JACM) 29, 3 (July 1982), 841-862.

H. P. Barendregt. 1981. The Lambda Calculus: Its Syntax and Semantics. North-Holland PubCo, Sole distributors for
the USAand Canada Elsevier North-Holland.

William E. Byrd and Daniel P. Friedman. 2007. aKanren: A Fresh Name In Nominal Logic Programming. Université
Laval Technical Report DIUL-RT-0701, Scheme Workshop ’07, editor Danny Dubé (2007), 79 - 90.

Christophe Calves. 2010. Complexity and Implementation of Nominal Algorithms. King’s College of London.

James Cheney. 2005. Relating Nominal and Higher-order Pattern Unification. In Proceedings of UNIF 2005. 104-119.
Nicolaas G. de Bruijn. 1972. Lambda Calculus Notation with Nameless Dummies, a Tool for Automatic Formula
Manipulation, with Application to the Church-Rosser Theorem. Indagationes Mathematicae (Proceedings) 75, 5 (Jan.
1972), 381-392.

Conal Elliott. 1989. Higher-order unification with dependent types. Rewriting Techniques and Applications 355 (Jan.
1989).

Daniel P. Friedman, William E. Byrd, Oleg Kiselyov, and Jason Hemann. 2018. The Reasoned Schemer, Second Edition.
Thérése Hardin, Gilles Dowek, Claude Kirchner, and Frank Pfenning. 1999. Unification via Explicit Substitutions: The
Case of Higher-Order Patterns. (Jan. 1999).

Jason Hemann and Daniel P. Friedman. 2013. pKanren: A Minimal Core for Relational Programming. In Proceedings
of the 2013 Workshop on Scheme and Functional Programming (Scheme’13), Vol. 6.

Gerard P. Huet. 1973. The undecidability of unification in third order logic. Information and Control 22, 3 (April 1973),
257-267. https://doi.org/10.1016/S0019-9958(73)90301-X

Gérard P.P. Huet. 2002. Higher Order Unification 30 Years Later. In Proceedings of the 15th International Conference on
Theorem Proving in Higher Order Logics (TPHOLs °02). Springer-Verlag, London, UK, UK, 3-12.

Jordi Levy and Mateu Villaret. 2008. Nominal Unification from a Higher-Order Perspective. In Rewriting Techniques
and Applications (Lecture Notes in Computer Science), Andrei Voronkov (Ed.). Springer Berlin Heidelberg, 246-260.
Jordi Levy and Mateu Villaret. 2010. An Efficient Nominal Unification Algorithm. In Proceedings of the 21st Interna-
tional Conference on Rewriting Techniques and Applications (RTA ’10). Edinburgh, Scottland, UK, 209-226.

L Lucchesi. 1972. The wundecidability of the wunification problem for third order languages.
https://www.semanticscholar.org/paper/The-undecidability- of-the-unification- problem-for-Lucchesi/
218e43e101803d9603156360e450fcb349b500b

Weixi Ma, Kuang-chen Lu, and Daniel P. Friedman. 2020. Higher-order Logic Programming with AKanren. In miniKan-
ren 2020.

Alberto Martelli and Ugo Montanari. 1982. An Efficient Unification Algorithm. ACM Trans. Program. Lang. Syst. 4, 2
(April 1982), 258-282.

Dale Miller. 1991. A Logic Programming Language with Lambda-abstraction, Function Variables, and Simple Unifica-
tion. Journal of Logic and Computation 1, 4 (Sept. 1991), 497-536.

Dale Miller and Gopalan Nadathur. 2012. Programming with Higher-Order Logic. Cambridge University Press, Cam-
bridge.

Dale Miller, Gopalan Nadathur, and Andre Scedrov. 1987. Hereditary Harrop Formulas and Uniform Proof Systems.
(Jan. 1987), 98-105.

Joseph P. Near, William E. Byrd, and Daniel P. Friedman. 2008. aleanTAP: A Declarative Theorem Prover for First-
order Classical Logic. In Logic Programming (LNCS 5366). Springer, Berlin, Heidelberg, 238-252.

Tobias Nipkow. 1993. Functional Unification of Higher-Order Patterns. Proc. 8th IEEE Symp. Logic in Computer Science
(1993).

, Vol. 1, No. 1, Article . Publication date: August 2021.

https://doi.org/10.1016/S0019-9958(73)90301-X
https://www.semanticscholar.org/paper/The-undecidability-of-the-unification-problem-for-Lucchesi/218e43e101803d96031f56360e450fcb349b500b
https://www.semanticscholar.org/paper/The-undecidability-of-the-unification-problem-for-Lucchesi/218e43e101803d96031f56360e450fcb349b500b

10 Weixi Ma and Daniel P. Friedman

[24] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL: A Proof Assistant for Higher-Order
Logic. Springer-Verlag, Berlin Heidelberg.

[25] T. Nipkow and Christian Prehofer. 1998. Higher-order rewriting and equational reasoning. Automated Deduction - A
Basis for Applications 1 (Jan. 1998).

[26] Ulf Norell. 2007. Towards A Practical Programming Language Based on Dependent Type Theory. Chalmers University
of Technology.

[27] M. S. Paterson and M. N. Wegman. 1978. Linear Unification. J. Comput. System Sci. 16, 2 (April 1978), 158-167.

[28] Lawrence C. Paulson. 1986. Natural deduction as higher-order resolution. The Journal of Logic Programming 3, 3 (Oct.
1986), 237-258.

[29] Frank Pfenning. 1989. Elf: a language for logic definition and verified metaprogramming. In [1989] Proceedings. Fourth
Annual Symposium on Logic in Computer Science. 313-322. ISSN: null.

[30] Frank Pfenning and Carsten Schiirmann. 1999. System Description: Twelf — A Meta-Logical Framework for Deductive
Systems. In CADE-16 (LNCS 1632). Springer, Berlin, Heidelberg, 202-206.

[31] Brigitte Pientka and Joshua Dunfield. 2010. Beluga: A Framework for Programming and Reasoning with Deductive
Systems (System Description). In Automated Reasoning (Lecture Notes in Computer Science), Jurgen Giesl and Reiner
Hihnle (Eds.). Springer, Berlin, Heidelberg, 15-21.

[32] Zhenyu Qian. 1993. Linear Unification of Higher-Order Patterns. In TAPSOFT’93: Theory and Practice of Software
Development (Lecture Notes in Computer Science), M. C. Gaudel and J. P. Jouannaud (Eds.). Springer Berlin Heidelberg,
391-405.

[33] ANTONIS STAMPOULIS. 2021. Makam. http://astampoulis.github.io/makam/

[34] Antonis Stampoulis and Adam Chlipala. 2018. Prototyping a functional language using higher-order logic program-
ming: a functional pearl on learning the ways of λProlog/Makam. Proceedings of the ACM on Programming
Languages 2, ICFP (July 2018), 93:1-93:30. https://doi.org/10.1145/3236788

[35] Teyjus team. 2021. Teyjus. http://teyjus.cs.umn.edu/

[36] Christian Urban, Andrew M. Pitts, and Murdoch]J. Gabbay. 2004. Nominal Unification. Theoretical Computer Science
323, 1-3 (Sept. 2004), 473-497.

—

, Vol. 1, No. 1, Article . Publication date: August 2021.

http://astampoulis.github.io/makam/
https://doi.org/10.1145/3236788
http://teyjus.cs.umn.edu/

	Abstract
	1 Background
	2 Grafting or substitution?
	3 ... we can turn false to true
	4 Static closures, the solution to name shadowing
	5 A shallow embedding implementation of Kanren
	6 Related work
	6.1 Higher-order unification algorithms
	6.2 Extending logic programming languages
	6.3 Nominal Unification

	7 Conclusion and future goals
	References

