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𝜆Kanren, adapted from 𝜆Prolog, extends miniKanren with higher-order logic programming. The existing
higher-order unification algorithms, however, are neither sound nor complete w.r.t. an “intuitive” under-
standing of 𝛼-equivalence. This paper shows these gaps and proposes a new method to handle 𝛼-equivalence
in higher-order unification.
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1 BACKGROUND
Is there a world where true is equal to false? Indeed, there is, if higher-order unification [13] and
miniKanren [9] meet each other. Even if all components are already well-established, it may still
end up with unnatural or even absurd results, if we combine them naively. This paper unveils the
difficulties in handling binders with standard higher-order unification. To solve these problems,
we propose a new unification formulation.

Higher-order unification [13] solves equations among 𝜆-terms modulo 𝛼𝛽𝜂-equivalence [3].
Miller [19] finds a decidable fragment of higher-order unification problems by restricting the ap-
plication forms of the input terms. For an application form 𝐹 𝑎, if 𝐹 is a unification variable, then 𝑎
must be a list of zero or more distinct bound variables. Such restricted application forms are called
patterns and we hereafter refer to the problem identified by Miller as pattern unification.

Pattern unification then becomes the core of 𝜆Prolog [20]. 𝜆Prolog implements a more expres-
sive logic [21] than Prolog does. Thanks to higher-order unification, 𝜆Prolog also extends Prolog
with binding structures and the ability to identify𝛼𝛽𝜂-equivalence among these binding structures.
With such extensions, 𝜆Prolog is a powerful tool for metaprogramming and theorem proving.

On the other hand, miniKanren [9] is a school of logic programming languages that focuses on
simplicity, as well as the purity of functions and relations. It rebuilds and demystifies the essence
of Prolog. 40 lines of code [11] are enough to build the core of miniKanren. With their emphasis on
pedagogy, miniKanren is an ideal tool for beginners to learn logic programming and for experts
to experiment using new ideas to enhance the language itself.

If a miniKanren language can rebuild and demystify 𝜆Prolog, then, we believe, this joining
of forces could yield a significant improvement to the logic programming community. Just as
miniKanren is taught in undergraduate level courses, a “𝜆Kanren” may greatly open up the study
of higher-order logic programming. Other than in a workshop paper [17], higher-order logic pro-
gramming remains unexplored by the miniKanren community.
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We show, in Sections 2 and 3, the obstacles to extend miniKanren with higher-order logic pro-
gramming. To solve these difficulties, in section 4, we propose a new higher-order unification
formulation and its algorithm. This algorithm is the heart of 𝜆Kanren, a new member that brings
higher-order logic programming to the Kanren family. Last but not least, section 6 concludes this
paper with related work.

2 GRAFTING OR SUBSTITUTION?
miniKanren provides intuitive operators. In the following, run corresponds to the existential quan-
tifier. 1 This query asks if there exists one variable X (hereafter capitalized letters are used for unifi-
cation variables) that is equal to the constant 'cat. miniKanren answers with a list of one element
that is 'cat.

> (run 1 X

(== X 'cat))

'(cat)

This query succeeds. Internally, the answer is a grafting, a pure textual replacement, resulting
from unifying X and 'cat, written as {X ↦→ 'cat}.

Next, binding structures are the first step towards higher-order logic programming. Let’s intro-
duce the 𝜆 operator to our language. Then 𝜆Kanren should be able to handle the following query.

> (run 1 X

(== (𝜆 (a) a) (𝜆 (b) b)))

'(_0)

This query succeeds. Here 𝜆𝑎.𝑎 and 𝜆𝑏.𝑏 can be unified because they are 𝛼-equivalent. And
𝜆Kanren answers with a list with one element. This element is _0, a way to express that variable X
is not restricted.

Out of curiosity, a novice in higher-order logic programmingmay try to exploremore interesting
queries, such as the following. 2

> (run 1 X

(== (𝜆 (a) X) (𝜆 (b) b)))

Does this query succeed? If the function body of the first term is a unification variable, what
should X be to make the two terms equal? The variable that corresponds to the same binder, a,
must be the answer for any newcomer to 𝜆-calculus with a basic understanding of 𝛼-equivalence.

Surprisingly enough, with higher-order unification, there is no answer.

> (run 1 X

(== (𝜆 (a) X) (𝜆 (b) b)))

'()

This query fails.Under any existing higher-order unification algorithm, X and a cannot be unified
due to the scope restrictions.

1In miniKanren, fresh is the existential quantifier. run is an interface operator that starts computing a query and is imple-
mented using fresh. To focus on our discussion on binders, we do not signify their difference.
2We use solid boxes for examples that are complete and dash boxes for examples that are incomplete or somewhat
questionable.
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Standard higher-order unification relies on substitution, but not grafting, to instantiate unifica-
tion variables. Substitution is capture-avoiding, whereas grafting is not. If we take the following
example into account, it makes some sense to disallow associating X and a (with either grafting or
substitution).

> (run 1 X

(== (𝜆 (a) X) (𝜆 (b) b))

(== (𝜆 (c) X) (𝜆 (d) d)))

This example is an implicit conjunction between two equations. It asks for at most one answer,
if there exists one, as run 1 suggests. Associating X with a cannot work, neither does c. If we
text-replace X with either, then the other one fails.

Higher-order unification implements this restriction with scopes. Unification variables are ∃-
quantified and lambda variables are ∀-quantified. A scope is a list of those quantifiers. Further, a
∀-quantified variable may instantiate (or occurs in the instantiation of) an ∃-quantified variable,
only if the ∀ variable precedes the ∃ variable in the scope.

In the above example that fails, the ∀-quantified a does not precede the ∃-quantified X. Its scope
is '((∃ X) (∀ a)). So, a cannot instantiate X.

But, do we really want this? This failure is counter-intuitive. For beginners who are not familiar
with higher-order unification, 𝛼-equivalence is only decided by the binder positions. But pattern
unification imposes an appendage limitation by taking unification variables into account. It is fair
to say that the existing pattern unification algorithms are not complete w.r.t. the natural sense of
𝛼-equivalence.

We first propose to treat unification variables and lambda variables differently. In particular,
lambda variables are effectively constants if they are represented by de Bruijn levels [7] (hereafter
levels). E.g., instead of '(), 𝜆Kanren may return '(d0), an answer that suggests “these two terms
can be made 𝛼-equal, if X corresponds to de Bruijn level 0.”

> (run 1 X

(== (𝜆 (a) X) (𝜆 (b) b)))

'(d0)

By mapping unification variables to de Bruijn levels, grafting no longer imposes the problem of
capturing. Consider the previously-failed example: X may correspond to de Bruijn level 0 in both
𝜆𝑎.𝑋

?
= 𝜆𝑏.𝑏 and 𝜆𝑐.𝑋

?
= 𝜆𝑑.𝑑 . And 𝜆Kanren would result in a success with '(d0).

> (run 1 X

(== (𝜆 (a) X) (𝜆 (b) b))

(== (𝜆 (c) X) (𝜆 (d) d)))

'(d0)

If we instantiate Xwith d0 and reify these levels w.r.t. their binders, we have the problem solved
with no surprise.

(== (𝜆 (a) a) (𝜆 (b) b))

(== (𝜆 (c) c) (𝜆 (d) d))

After all, using grafting with de Bruijn levels captures the essence of 𝛼-equivalence: names don’t
matter. A unification algorithm based on de Bruijn levels would also be more straightforward
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because it’s practically first-order. But, we cannot yet lift the scope restriction on lambda variables
and drop in de Bruijn levels, because sometimes names do matter and …

3 … WE CAN TURN FALSE TO TRUE
Herewe are concerned about an implementation technique that has been used in all pattern unifica-
tion algorithms, except for those with de Bruijn numbers. 3 We call this technique binder-merging.

When two terms are unified, one term’s binders are replaced by the other’s. Then 𝛼-equivalence
is as simple as structural equivalence, e.g. unifying

𝜆𝑥.𝜆𝑦.𝑋𝑥𝑦
?
= 𝜆𝑎.𝜆𝑏.𝑎𝑏

is reduced to unifying
𝜆𝑎.𝜆𝑏.𝑋𝑎𝑏

?
= 𝜆𝑎.𝜆𝑏.𝑎𝑏

and then solved by {𝑋 ↦→ 𝜆𝑎.𝜆𝑏.𝑎𝑏}. Instantiating 𝑋 gives

𝜆𝑎.𝜆𝑏.((𝜆𝑎.𝜆𝑏.𝑎𝑏)𝑎𝑏) ?
= 𝜆𝑎.𝜆𝑏.𝑎𝑏

that 𝛽-reduces to the following.
𝜆𝑎.𝜆𝑏.𝑎𝑏

?
= 𝜆𝑎.𝜆𝑏.𝑎𝑏

As convenient as it is, binder-merging does not handle the name shadowing problem. This is
overlooked by all pattern unification algorithms. Algorithms that use what we call binder-merging
state upfront that they don’t consider name shadowing, e.g. Nipkow and Prehofer [25], Qian [32].

Take the following program.

> (run 1 X

(== (𝜆 (a) (𝜆 (a) X)) (𝜆 (c) (𝜆 (d) c))))

With either binder-merging or de Bruijn syntax, the unification problem is effectively reduced to
the following.

𝜆𝑐.𝜆𝑑.𝑋
?
= 𝜆𝑐.𝜆𝑑.𝑐

Then it appears to be solvable by {X ↦→ c}, or equivalently {X ↦→ d0}, that associates 𝑋 with the
outer-binder. If we instantiate the unification variables in the original problem and naively reify
de Bruijn levels with concrete names, then we have the following,

(== (𝜆 (a) (𝜆 (a) a)) (𝜆 (c) (𝜆 (d) c)))

which claims that the 𝜆-encoded false is true!
The name shadowing problem has wide impact. The next example shows that binder-merging

could go wrong even without lifting the scope restrictions.

𝜆𝑥.𝜆𝑦.𝑥 𝑦
?
= 𝜆𝑎.𝜆𝑎.𝑎 𝑎

is converted to
𝜆𝑎.𝜆𝑎.𝑎 𝑎

?
= 𝜆𝑎.𝜆𝑎.𝑎 𝑎,

which then ends up with another false positive.
Current solutions use either a pre-processor that adds gensyms to lambda variables to make

each individual unique or a smart reifier that detects name shadowing. One downside is that the
randomly-generated symbols are not pleasantly-readable. Also, these extra processors demand
extra complexity, as to both runtime speed and implementation technique.
3There are two ways to implement de Bruijn’s nameless syntax, indices and levels. Both use numbers to represent variables.
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𝑡 ::= 𝑋 unification variable
| 𝑡 𝑡 function application
| 𝜆𝑎.𝑡 named-binder
| 𝑎 name
| 𝜆 𝑡 nameless-binder
| ℓ level

𝜙 ::= 𝜖 | 𝑎, 𝜙 scope
𝜅 ::= ⟨𝜙 ; 𝑡⟩ static closure

Fig. 1. Terms, scopes, and static closures

4 STATIC CLOSURES, THE SOLUTION TO NAME SHADOWING
We propose a simple and efficient alternative, static closures. Static closures are integrated into
the unification process and they decide 𝛼-equivalence while correctly handling name shadowing.
We obtain a new algorithm by extending traditional pattern unification with static closures. This
algorithm is formulated differently from the previous ones, since it uses a mixture of named and
nameless syntax, as introduced in Fig. 1. The nameless syntax, i.e., nameless-binders and levels are
derived during unification.

A static closure is a pair of a scope and a unification term. A scope is a list of binders. In essence,
a static closure captures the surrounding binders of a term. E.g., the term 𝜆𝑎.𝜆𝑏.𝑋 reduces to the
static closure ⟨𝑎, 𝑏; 𝑋 ⟩.

Static closures support the following operations:
• ext(𝜙, a) adds the name a to the scope 𝜙 . If a has been previously added to 𝜙 , then this

older one is shadowed and its corresponding level becomes unusable.
• db(𝜙, a) is Just ℓ where ℓ is the de Bruijn level of aw.r.t the scope 𝜙 , if a is not shadowed

in 𝜙 ; otherwise, the result is Nothing.
• db(𝜙, ℓ) is Just ℓ , if ℓ is available in 𝜙 ; otherwise, the result is Nothing.

Example 1. Consider the following unification problem.

𝜆𝑎.𝜆𝑏.𝑋
?
= 𝜆𝑐.𝜆𝑑.𝑐

The problem is reduced to comparing two static closures.

⟨𝑎,𝑏; 𝑋 ⟩ ?
= ⟨𝑐, 𝑑 ; 𝑐⟩

We first apply db on the right-hand side.

⟨𝑎, 𝑏; 𝑋 ⟩ ?
= Just 0

Then we try to solve X by applying db on the scope of the left-hand side and 0.

Just 0
?
= Just 0

It works. So, the solution is {X ↦→ d0}.

Example 2. Consider another example with name shadowing:

𝜆𝑎.𝜆𝑎.𝑋
?
= 𝜆𝑐.𝜆𝑑.𝑐

is reduced to
⟨𝑎, 𝑎; 𝑋 ⟩ ?

= ⟨𝑐, 𝑑 ; 𝑐⟩.
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Definitions 𝐷 ::= 𝐺 ⊃ 𝐷 |𝐷 ∧ 𝐷 | ∀𝑥 𝐷
Goals 𝐺 ::= 𝐺 ∧𝐺 |𝐺 ∨𝐺 | ∃𝑥 𝐺 |𝐷 ⊃ 𝐺 | ∀𝑥 𝐺

Fig. 2. Horn Clauses and Hereditary Harrop Formulas

We first apply db on the right-hand side.

⟨𝑎, 𝑎; 𝑋 ⟩ ?
= Just 0

Next, try to solve X by applying db on the scope of the left-hand side and 0. This time, db(⟨𝑎, 𝑎; 0⟩)
is Nothing because the outer binder a is shadowed.

Nothing
?
= Just 0

And we know the unification fails.

Example 3. Some solvability cannot be immediately decided, e.g.,

𝜆𝑎.𝜆𝑏.𝑋
?
= 𝜆𝑐.𝜆𝑑.𝑌

becomes an equation between two static closures of unification variables.

⟨𝑎, 𝑏; 𝑋 ⟩ ?
= ⟨𝑐, 𝑑 ; 𝑌 ⟩

Here, the grafting itself is not able to describe the solution. Now our solution needs a context: the
set of equations between static closures of unification variables. This problem has the solution:
the grafting being empty and the context being {⟨𝑎,𝑏; 𝑋 ⟩ ?

= ⟨𝑐, 𝑑 ; 𝑌 ⟩}. Practical problems, such as
type checking, involve solving many unification problems. The accumulated equations between
closures of one unification problem are usually solved and reduced to grafting, during the unifica-
tion on other problems.

5 A SHALLOW EMBEDDING IMPLEMENTATION OF 𝜆KANREN
Besides the unification algorithm, the underlying logic of 𝜆Prolog is more expressive than Prolog’s.
Prolog (and miniKanren) implements Horn Clauses [2] while the underlying logic of 𝜆Prolog is
Hereditary Harrop Formulas [21]. Fig. 2 illustrates these two logics. The dimmed part is their
overlap and the non-dimmed part is from Hereditary Harrop Formulas only. This section reviews
such language extensions of 𝜆Kanren, introduced in Ma et al. [17].

miniKanren also implements first-order Horn clauses. As shown in the previous sections, the
host language uses run to introduce goals with some existentially quantified variables (∃𝑥𝐺). Be-
sides, conjunctions (𝐺∧𝐺) are implicit and disjunctions (𝐺∨𝐺) use miniKanren’s cond𝑒 operator.

For example, the formula

∃𝑋 ∃𝑌 ((𝑋 = 𝑌 ∧𝑋 = 'cat)∨(𝑋 = 'cat∧𝑌 = 'dog))
corresponds to the following program.

> (run* (X Y)

(cond𝑒

[(== X Y) (== X 'cat)]

[(== X 'cat) (== Y 'dog)]))

'((cat cat) (cat dog))
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On the other hand, miniKanren introduces definitions by defining a function in its host language.
These definitions are universal quantifiers with implicit implications. E.g.,

∀𝑋 (𝑋 = '()) ⊃ (empty? 𝑋 )

can be translated to the following miniKanren program.

(define (empty? X)

(== X '()))

𝜆Kanren relies on two new operators, implicational goals and universally quantified goals, to
express Hereditary Harrop Formulas.

• Implicational goals are implemented with the operator assume that introduces hypotheses
in its clause. As an example, we may use the assume operator to temporarily extend the ==
relation.

>(run 2 X

(assume (== 'apple 'orange)

(== 'apple X)))

'(apple orange)

• The all operator introduces universally quantified goals. E.g., we may synthesize a function
that yields whatever it takes in, using the following.

>(run 1 F

(all (A)

(== A (F A))))

'((lambda (_0) _0))

• As in the previous example, the == operator recognizes 𝛽-equivalence. Indeed, it will be pow-
ered by the unification algorithm proposed in the last section and recognize 𝛼𝛽-equivalence.

6 RELATED WORK
The related work can be categorized using three tracks: variations of higher-order unification al-
gorithms, logic programming languages that extend first-order logic, and nominal unification.

6.1 Higher-order unification algorithms
Higher-order unification emerged during the search of automated theoremproving of higher-order
logic, i.e., logic with quantifiers over sets and functions. In the setting of 𝜆-calculus, higher-order
unification solves equations modulo 𝛼𝛽𝜂-equivalence. Since 𝛽-conversion is a powerful and com-
plicated reduction, it is not surprising that higher-order unification is not decidable. This is proved
by Huet [12] and Lucchesi [16], independently.

Undecidability does not get in the way of practicality. Many applications [8, 28, 29] have been
built on Huet [12]’s semi-decidable algorithm. This algorithm has introduced two core ideas of
higher-order unification algorithms.

• Rigid and flex terms.A term is called rigid if its head symbol is a bound variable or a constant.
A term is called flex if its head symbol is a unification variable. Being flexible is in the sense
that the term can be removed through a substitution (or a grafting).
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8 Weixi Ma and Daniel P. Friedman

• Elementary substitution. Each unification variable should capture all its visible bound vari-
ables, e.g. in 𝜆𝑎0 ...𝜆𝑎𝑖 (ℎ(𝑋0 𝑎0 ...𝑎𝑖 )...(𝑋 𝑗 𝑎0 ...𝑎𝑖 )), each 𝑋𝑛 should take every 𝑎 as input, so
it doesn’t lose any information.

The first decidable fragment, discovered by Miller [19], then becomes the foundation of the later
research on higher-order unification. Qian [32] has claimed a result, modified from Miller’s algo-
rithm, that runs in linear time, although Qian’s algorithm has not been implemented. Hardin et al.
[10] have added explicit substitution with de Bruijn numbers to Miller’s algorithm to improve its
efficiency. The latter one results in practical implementations, such as in Pfenning and Schürmann
[30].

Besides, Nipkow [23] introduces a functional version of Miller’s algorithm. It is appreciated for
its simplicity and shows its practicality in proof assistants [24].

Higher-order unification is also a critical component of building dependent typed languages
for two reasons: (1) 𝛽-conversion is involved during type checking, and (2) unification is needed
to elaborate a user-friendly surface language to a cumbersome core language. As examples, the
elaborates of Agda [26] and Beluga [31] adapt Miller’s algorithm for dependent types [1]. As Agda
uses de Bruijn numbers in its core language [26], it suffers from the name shadowing problem
mentioned above and must make all variable names unique in a “gensym” manner. Doing so bloats
type checking with randomly generated symbols and makes the error messages painful to read.

6.2 Extending logic programming languages
𝜆Prolog is well-equipped for building theorem provers and programming languages, as it provides
a natural integration of 𝛼𝛽-conversion. It is also a theorem prover with the built-in capability of
proof search. Miller and Nadathur [20] provides a comprehensive introduction to 𝜆Prolog, using
an implementation called Teyjus[35]. Makam [33] is a refined version that lifts some restrictions in
Teyjus. Stampoulis and Chlipala [34] demonstrate howMakammakes it easier to build complicated
type systems.

Unlike the Prolog languages, which are implemented by writing interpreters or compilers, the
Kanren languages feature shallow embedding. Instead of building everything from the ground up,
language objects are represented by functions and macros of a host language. Shallow embedding
enables fast prototyping and reuses the developers tools of the host language.
𝛼Kanren [4] shows the convenience of shallow embedding. It extends miniKanren with nominal

unification [36] and the whole language is implemented within a few hundred lines of code. Its
practicality is shown by Near et al. [22] that uses it to build a theorem prover.

6.3 Nominal Unification
Nominal unification [36] extends first-order unification with 𝛼-equivalence. It handles variable
names with swappings, a list of name pairs.

Nominal unification and pattern unification are equally expressive. Cheney [6] shows that pat-
tern unification problems can be reduced to nominal unification. Later, Levy and Villaret [14]
introduces the reduction from nominal unification to pattern unification.

As pattern unification is decidable in linear time [32], many are seeking a linear time bound of
nominal unification. Yet𝑂 (𝑛2) is the state-of-the-art. Levy and Villaret [14]’s reduction to pattern
unification is quadratic, which is the first proof of 𝑂 (𝑛2). Later, Levy and Villaret [15] and Calvès
[5] independently find more quadratic results, building on advances of Paterson andWegman [27]
and Martelli and Montanari [18].
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A New Higher-order Unification Algorithm for 𝜆Kanren 9

7 CONCLUSION AND FUTURE GOALS
Extending miniKanren with higher-order programming is a non-trivial endeavor. Our concern is
that higher-order unification algorithms consist of many surprises in 𝛼-equivalence. In this regard,
we have proposed static closures, a new means to handle binding structures. Static closures use a
mixture between the ordinary 𝜆-syntax and de Bruijn’s nameless syntax.

This paper shows a preview of static closures.We anticipate extending the formulation of higher-
order unification with static closures and derive a sound and complete algorithm for 𝛼-equivalence.
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