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1 INTRODUCTION
This paper deals with the problem of the worst-case time complexity estimations for relational pro-
gram evaluation in the canonical implementation of miniKanren based on interleaving search [5].
Despite its simple implementation, the search in miniKanren has a number of subtleties affecting
the performance, which are hard to think about intuitively altogether. It is easy to overlook some
of them and the behavior of the search in certain cases can be really surprising.
As a motivative example, consider two implementations of a standard recursive relation calcu-

lating the length of a list (see Fig. 1). They differ only in the orders of conjuncts. Although the
lengthod relation can be seen as a more direct definition of a function as a relation (all steps of
usual length evaluation written up in order), it is well-known that the lengtho with the recursive
call in the end is much faster when running this relation backward (in fact, the search diverges if
we run lengthod backward, while for lengtho it terminates). What is less known and what we find
more unexpected is the fact that if we run both relations forward (specifying a list and asking for
its length) lengtho is still much faster than lengthod , although they perform the same number of
unifications. One can see the comparative time of the search in Fig. 2. The difference is even more
staggering if we switch off occurs checks in unifications. It’s OK because for simple queries like
this occurs checks are never violated. In the same Fig. 2 you can see that the asymptotic complexity
becomes different in this case: it is linear for lengtho and quadratic for lengthod .
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lengtho = λ a n →

( (a ≡ Nil ) ∧ (n ≡ O ) ) ∨
( fresh (h t n ' )

(a ≡ Cons (h , t ) ) ∧
(n ≡ S (n ' ) ) ∧
(lengtho t n ' ) )

)

lengthod = λ a n →

( (a ≡ Nil ) ∧ (n ≡ O ) ) ∨
( fresh (h t n ' )

(a ≡ Cons (h , t ) ) ∧
(lengthod t n ' ) ∧
(n ≡ S (n ' ) ) )

)

Fig. 1. Example of two implementations of the length calculating relation

Fig. 2. Time (in seconds) of the search for the relations lengtho (purple) and lengthod
(green) depending on the lentgh of the list. Left: without occurs check. Right: with occurs check.

After investigating the execution for this example in detail we found that the difference is caused
not by unifications but by the process of scheduling of goals during the search. During the execution
of a program in miniKanren a lazy structure is build that decomposes the goals into unifications,
performs these unifications in a certain order, and passes the results appropriately. For the lengthod
relation this structure becomes linear in size just because of the order in conjunctions and increases
the time of scheduling significantly. This kind of effect is hard to predict and measure without a
formal model for performance in miniKanren.

This paper presents such a model. We study evaluation in a specific (canonical) implementation
of miniKanren with goals evaluated to lazy streams in program-written order, but we rely only on
the basic principles of implementation of miniKanren, so the model should be easily adoptable for
a large class of regular implementations. We state that the total time of the search in miniKanren
breaks into three separate parts: the time of scheduling (Ts ) that breaks the evaluation into a sequence
of unifications, the time required to perform these unifications, and the time of reifications (Tr )
that reconstruct the result in an expected form in the end. The time of unifications can be further
divided into the time of occurs checks (Tocc ) during the unification and the time (Tuni ) of the rest of
the unification algorithm (this division will help us to see how large is the part of the total time that
occurs check, which often can be omitted, takes). So the total time of the search can be calculated
as the sum of four components:

T = Ts +Tuni +Tocc +Tr
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C = {Cki
i } constructors

TX = X ∪ {Cki
i (t1, . . . , tki ) | tj ∈ TX } terms over the set of variables X

D = T∅ ground terms
X = {x ,y, z, . . . } syntactic variables
A = {x?,y?, z? . . . } logic variables
R = {Rkii } relational symbols with arities

G = TX ≡ TX equality
G ∧ G conjunction
G ∨ G disjunction
fresh X . G fresh variable introduction
Rkii (t1, . . . , tki ), tj ∈ TX relational symbol invocation

S = {Rkii = λ x i1 . . . x
i
ki
.дi ; } д specification

Fig. 3. The syntax of miniKanren

We show how these components can be estimated and compared to each other in terms of
asymptotics. The scheduling time complexity can be measured precisely since we link it to a
specific value which we call scheduling factor, defined in terms of existing formal semantics of
miniKanren (we recall the existing formal descriptions of miniKanren in section 2) and can be
calculated using a number of equations (section 3). The other time components are hard to estimate
precisely in general, as they are connected to the unification process, but we identify two criteria
that determine a wide range of cases for which these time components can be estimated easily
(section 4). These separate methods for estimation of different components of the time of the search
can be put together in one approach for calculating manually the time complexity for a given query
to a recursive relation (if this query satisfies the stated criteria) using the principles of symbolic
execution (section 5). We then show the applicability of our method by applying it for a number of
realistic miniKanren relations (section 6).

2 BACKGROUND: SYNTAX AND OPERATIONAL SEMANTICS
In this section, we recollect some known formal descriptions for miniKanren language that will be
used as a basis for our development. Specifically, we restate the syntax of the basic version of the
language and the operational semantics for program evaluation. The descriptions here are taken
from [10] (with a few non-essential adjustments for presentation purposes) to make the paper
self-contained, more details and explanations can be found there.
The syntax of the basic version of miniKanren is shown in Fig. 3. All data is presented using

terms TX built from a fixed set of constructors C with known arities and variables from a given
set X . We parameterize the terms with an alphabet of variables since in the semantic description
we will need two kinds of variables: syntactic variables X, used for bindings in the definitions, and
logic variables A, which are introduced and unified during the evaluation.

In this version of miniKanren there are five types of goals: unification of two terms, conjunction
and disjunction of goals (the “conde” operator from the canonical versions of miniKanren, split
in the two for simplicity), fresh logic variable introduction, and invocation of some relational
definition. For the sake of brevity, in code snippets, we abbreviate immediately nested “fresh”
constructs into the one, writing “fresh x y . . . . д” instead of “fresh x . fresh y . . . . д”.
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Σ = A → TA substitutions
E = Σ × N environments

S = ⟨G, E⟩ task
S ⊕ S sum
S ⊗ G product

Ŝ = ⋄ | S states
L = ◦ | E labels

Fig. 4. States and labels in the LTS for miniKanren

The specification S consists of a set of relational definitions and a top-level goal. A top-level goal
represents a search procedure that returns a stream of substitutions for the free variables of the
goal. The language we consider is first-order, as goals can not be passed as parameters, returned, or
constructed at runtime.
During the evaluation of miniKanren program an environment, consisting of substitution for

logic variables and a counter of allocated logic variables, is threaded through the computation and
updated in every unification and fresh variable introduction. The substitution in the environment
at a given point and a given branch of evaluation contains all the information about relations
between the logical variables at this point. We will later refer to the substitution in the environment
at a given point as a “current substitution” in informal explanations. The different branches are
combined via interleaving search procedure [7]. The answers for the given query are extracted from
the final environments (they are the values of the queried variables in the substitution in the final
environment).
This search procedure is formally described by operational semantics in the form of a labeled

transition system. This semantics corresponds to the canonical implementation of interleaving
search.

The form of states and labels in the transition system is defined in Fig. 4. Non-terminal states S
have a tree-like structure with intermediate nodes corresponding to partially evaluated conjunctions
(“⊗”) or disjunctions (“⊕”). A leaf in the form ⟨д, e⟩ determines a task to evaluate a goal д in an
environment e . For a conjunction node, its right child is always a goal since it cannot be evaluated
unless some result is provided by the left conjunct. We also need a terminal state ⋄ to represent the
end of the evaluation. The label “◦” is used to mark those steps which do not provide an answer;
otherwise, a transition is labeled by an updated environment.
The transition rules are shown in Fig. 5. The introduced transition system is completely deter-

ministic. Therefore a derivation sequence for a state s determines a certain trace — a sequence
of states and labeled transitions between them. It may be either finite (ending with the terminal
state ^) or infinite. We will denote by Tr st (s) the sequence of states in the trace for initial state
s and by Trans (s) the sequence of answers in the trace for initial state s . The sequence Trans (s)
corresponds to the stream of answers in the reference miniKanren implementations.

3 SCHEDULING COMPLEXITY
We may notice that operational semantics described in the previous section can be used to calculate
the number of elementary scheduling steps. In this section, we define a specific value that estimates
the scheduling time and give some equations to calculate this value for a given semantic state.
However, our ultimate goal is to provide a way to deduce the complexity factor recursively for
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⟨t1 ≡ t2, (σ ,n)⟩
◦
−→ ^, �mдu (t1σ , t2σ ) [UnifyFail]

⟨t1 ≡ t2, (σ ,n)⟩
(mдu (t1σ ,t2σ )◦σ ), n)
−−−−−−−−−−−−−−−−−→ ^ [UnifySuccess]

⟨д1 ∨ д2, e⟩
◦
−→ ⟨д1, e⟩ ⊕ ⟨д2, e⟩ [Disj]

⟨д1 ∧ д2, e⟩
◦
−→ ⟨д1, e⟩ ⊗ д2 [Conj]

⟨fresh x .д, (σ ,n)⟩
◦
−→ ⟨д [αn+1 /x ], (σ ,n + 1)⟩ [Fresh]

Rkii = λ x1 . . . xki .д

⟨Rkii (t1, . . . , tki ), e⟩
◦
−→ ⟨д [t1

/
x1 . . .

tki
/
xki ], e⟩

[Invoke]

s1
◦
−→ ^

(s1 ⊕ s2)
◦
−→ s2

[DisjStop]

s1
e
−→ ^

(s1 ⊕ s2)
e
−→ s2

[DisjStopAns]

s
◦
−→ ^

(s ⊗ д)
◦
−→ ^

[ConjStop]

s
e
−→ ^

(s ⊗ д)
◦
−→ ⟨д, e⟩

[ConjStopAns]

s1
◦
−→ s ′1

(s1 ⊕ s2)
◦
−→ (s2 ⊕ s

′
1)

[DisjStep]

s1
e
−→ s ′1

(s1 ⊕ s2)
e
−→ (s2 ⊕ s

′
1)

[DisjStepAns]

s
◦
−→ s ′

(s ⊗ д)
◦
−→ (s ′ ⊗ д)

[ConjStep]

s
e
−→ s ′

(s ⊗ д)
◦
−→ (⟨д, e⟩ ⊕ (s ′ ⊗ д))

[ConjStepAns]

Fig. 5. Operational semantics of interleaving search

a given query. This problem will be addressed in Section 5, which will make use of recurrent
equations presented here.
We also restrict our considerations only by the case when the evaluation of a goal in question

terminates. Indeed, if the search diverges, no reasonable complexity estimation for the time of the
whole search can be given. A much more interesting question would be the complexity estimation
for coming up with some specific answer; however for now this problem seems to be too hard to
tackle.

Our first idea is to take the number of states d (s) in the finite trace for a given state s:

d (s)
def
= |Tr st (s)|

However, it turns out, that this value alone is not enough to provide an accurate scheduling
complexity estimation. The reason is that some elementary steps in the semantics are not elementary
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in existing implementations. Namely, a careful analysis of the semantics discovers that it involves
navigation to the leftmost leaf of the state, which in implementations corresponds to a number of
steps, proportional to the length of the leftmost branch of the state in question. Here we provide an
ad-hoc definition for this value, t (s), which we call the scheduling factor :

t (s)
def
=

∑
si ∈Tr st (s)

lh (si )

where

lh (⟨д, e⟩)
def
= 1

lh (s1 ⊕ s2)
def
= lh (s1) + 1

lh (s ⊗ д)
def
= lh (s) + 1

The following lemma provides a fundamental relation between these two estimations of the
scheduling complexity:

Lemma 3.1. For any state s

d (s) ≤ t (s) ≤ d2 (s)

Our next goal is to come up with the equations which relate the scheduling complexity of states
with the scheduling complexity of their (immediate) substates. We take scheduling factor t (s) as a
value that determines the scheduling complexity Ts , but we will also need to calculate d (s) as it
will be used in the equations for t (s).

The following lemma, obvious from the definitions, will be enough to deal with a basic (leaf
state) case:

Lemma 3.2. If

⟨д, e⟩
◦
−→ s ′

or

⟨д, e⟩
a
−→ s ′

then

d (⟨д, e⟩) = d (s ′) + 1

and

t (⟨д, e⟩) = t (s ′) + 1

In state of the form s1 ⊕ s2 the substates are evaluated separately, one step at a time for each
substate, so the total number of semantic steps is just a sum. However, for the scheduling factor,
there is an extra summand cost⊕(s1 ⊕ s2) since the heights of the states in the trace are increased by
one additional ⊕-node on the top. This additional node exists in the trace until one of the substates
is evaluated completely, so the scheduling factor is increased by the number of steps before such
event. So we have the following lemma.
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Lemma 3.3. For any two states s1 and s2

d (s1 ⊕ s2) = d (s1) + d (s2)
t (s1 ⊕ s2) = t (s1) + t (s2) + cost⊕(s1 ⊕ s2)

where

cost⊕(s1 ⊕ s2) = min {2 · d (s1) − 1, 2 · d (s2)}

For the states of the form s ⊗ д the reasoning is the same, but the result is more complicated. In
⊗-state the left substate is evaluated until an answer is found, which is then taken as an environment
for the evaluation of the right subgoal. Thus, in the equations for ⊗-states we sum the evaluation
time of the second goal for all the answers generated for the first substate. The tasks of evaluating
the right subgoal in different environments are added to the evaluation of the left substate by the
creation of an ⊕-state, so for scheduling factor there is an additional summand cost⊕(⟨д, ai ⟩ ⊕ s ′i )
for each answer with s ′i being the state after discovering the given answer. There is also an extra
summand cost⊗(s ⊗ д) to the scheduling factor because of the ⊗-node that increases the height in
the trace, analogous to the one caused by ⊕-nodes. We can notice that ⊗-node is always placed
immediately over the left substate so this addition is exactly the number of steps for the left substate.
Therefore the resulting equations for ⊗-states are as follows.

Lemma 3.4. For any state s and any goal д

d (s ⊗ д) = d (s) +
∑

ai ∈Trans (s)

d (⟨д, ai ⟩)

t (s ⊗ д) = t (s) + (
∑

ai ∈Trans (s)

(t (⟨д, ai ⟩) + cost⊕(⟨д, ai ⟩ ⊕ (s
′
i ⊗ д)))) + cost⊗(s ⊗ д)

where

cost⊕(s1 ⊕ s2) = min {2 · d (s1) − 1, 2 · d (s2)}
cost⊗(s ⊗ д) = d (s)

s ′i is the next state in the trace for s after the transition labeled with the answer ai

After unfolding the auxiliary definitions the last equation becomes too cumbersome to use
directly, so we will use some its approximations instead. One option is to go with the first argument
of “min” in cost⊕(⟨д, ai ⟩ ⊕ s ′i ). It should be a good approximation in the case when there are several
answers passed to the second goal and for none of them the number of steps surpasses the overall
number of steps for all other answers (the second argument of “min” will include the sum for the
rest of the answers).

Corollary 3.5. For any state s and any goal д

t (s ⊗ д) ≤ t (s) + d (s) +
∑

ai ∈Trans (s)

(t (⟨д, ai ⟩) + 2 · d (⟨д, ai ⟩)

In the case when there is only one answer, however, we should rather go with the second
argument of “min”.
In this case the number of steps d (s ′1 ⊗ д) is equal to the number of steps d (s ′1) since no more

answers are produced, and we can approximate it by the length d (s) of the whole trace for s .
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8 Dmitry Rozplokhas and Dmitry Boulytchev

Corollary 3.6. For any state s and any goal д, if Trans (s) = {a}, then

t (s ⊗ д) ≤ t (s) + 3 · d (s) + t (⟨д, a⟩)

Finally, since we estimate only up to a multiplicative constant (in particular, it does not matter by
what constants we multiply the values of d (·)when calculating the scheduling factor) we can derive
from these results two compact scheduling time approximations for goals in the form of sequences
of disjuncts/conjuncts. These two approximations work regardless of the associativity/grouping of
subformulas; thus a certain constant ck , depending only on k , comes in.
For conjunctions, we have the following one.

Lemma 3.7. Let д = д1 ∧ · · · ∧ дk and let Ai be a set of all answers that are passed to дi at some
stage starting from some initial environment e0

A1 = {e0}
Ai+1 =

⋃
a∈Ai
Trans (⟨дi , a⟩)

Then

d (⟨д, e⟩) =
∑

1≤i≤k

∑
a∈Ai

d (⟨дi , a⟩)

t (⟨д, e⟩) ≤
∑

1≤i≤k

∑
a∈Ai

t (⟨дi , a⟩) + ck ·
∑

1≤i≤k

∑
a∈Ai

d (⟨дi , a⟩),

In the case when all Ai contain only one answer

t (⟨д, e⟩) ≤
∑

1≤i≤k

∑
a∈Ai

t (⟨дi , a⟩) + ck ·
∑

1≤i≤k−1

∑
a∈Ai

d (⟨дi , a⟩)

When applying the estimation from corollary 3.5 we have an extra summand in the form of
the number of steps (multiplied by some constant) for all conjuncts. The only exception is the
case when every conjunct produces no more than one answer, then we can use the corollary 3.6
everywhere instead and drop out the additional number of steps for the last conjunct. Besides
that, a constant number of steps is required to turn each conjunction into a ⊗-state, but we may
integrate this extra constant into ck .
For disjunctions, the lemma is the following one.

Lemma 3.8. Let д = д1 ∨ · · · ∨ дk and 1 ≤ l ≤ k ; then

d (⟨д, e⟩) ≤
∑

1≤i≤k
d (⟨дi , e⟩)

t (⟨д, e⟩) ≤
∑

1≤i≤k
t (⟨дi , e⟩) + ck ·

∑
1 ≤ i ≤ k
i , l

d (⟨дi , e⟩).

Roughly speaking, if we have a disjunct дm with a number of steps larger than all the steps for
other disjuncts combined, then when applying lemma 3.3 we again will have an extra summand in
the form of the number of steps for all disjuncts except for the дm (it will always be the largest
argument of “min”). But if we can drop out the largest the number of steps among disjuncts, we
can also drop out any other instead, that’s where arbitrary l comes from. The case when there is no
such дm has to be considered separately; it is simpler since then all the numbers of steps are the
same up to a multiplicative constant.
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4 UNIFICATION AND REIFICATION COMPLEXITY
Syntactic unification of terms is a core operation for logic programming in whole and relational
programming in particular. However, the performance characteristics of conventional unification
algorithms are rather hard to assess. The known worst-case estimations say very little about the
behavior of unification in practically important cases, and, in general, the very notion of “practical
importance” is hard to formalize (which constitutes a generic problem for applied complexity as
well).

The practical observations witness, that while the worst-case complexity for the conventional
unification algorithm is exponential, in the majority of cases met in practical logic programming
the time for each unification problem instance throughout the program execution is linear or even
constant on the size of the input.
miniKanren has a distinctive way of implementing unification fitting in accordance with its

ideology. First, since miniKanren aims at the purely functional implementation of an embedded
logical language it uses a triangular form of substitution [1] which allows a simple extension
in a non-mutable fashion. Such substitutions are lazy in the sense that they hold a partially
substituted value for each variable, so to obtain a fully substituted value it may be necessary to
apply a substitution repeatedly. In particular, a full cycle of substitution application is needed
at the end of the search to get the result for a queried variable. This process is called reification.
miniKanren uses the conventional Robinson’s algorithm for unification [9], adjusted for triangular
substitutions [5]. Second, since miniKanren commits to adhere to logical consistency, by default it
always performs occurs checks during the unification. Occurs check ensures that a binding being
added into the substitution does not introduce any circularity, which is crucial for establishing
the soundness of unification results. However, being rarely violated, occurs check introduces a
significant performance penalty, so some logical languages (such as Prolog) omit it.
In this section, we show how the complexity of unification can be assessed for many practical

cases. Specifically, we present two dynamic criteria for relational programs, under which every
unification (omitting occurs check) in the program performs a constant number of basic operations.
At the same time, the occurs check, which complexity can be estimated separately, adds a significant
overhead to the execution time and often increases the asymptotic complexity. A number of
programs satisfying given tests and showing the impact of occurs check are listed in section 6.
The actual time of unification depends on a concrete choice for a data structure to represent

triangular substitutions (which are, abstractly, maps from integers to terms). Therefore we parame-
terize our estimations by two values — lookup (σ ) and add (σ ), — which represent, respectively,
the worst-case asymptotic complexity for lookup and add operations w.r.t. to a substitution σ .
The obvious candidate data structure is standard library maps for a host language (and many
implementations like miniKanren-with-symbolic-constraints and OCanren follow this recipe).
For this data structure both operations have logarithmic complexity, so we expect this multiplier to
be negligible. However, some implementations like microKanren use associative lists for simplic-
ity of presentation (which have linear-time lookup and constant-time addition complexities) or
more complex data structures like random-access lists (which have a log-time lookup and average
constant-time addition complexities), so we keep this parameterization for the general case. The
review of the performance of different date structures for triangular substitutions is given in [3].
The basic building block for the unification with triangular substitution is a walk operation.

This operation checks whether a given variable is mapped by a given substitution to a term with
a constructor at the top level. “Walk” continually looks up the substitution until a binding to
a non-variable is found or until there is no binding at all. This process can diverge only when
there is a circular binding in the substitution, which, in turn, is excluded by the occurs check, so
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10 Dmitry Rozplokhas and Dmitry Boulytchev

the substitutions are always consistent in this sense [8]. Nevertheless “walk” can require a linear
number (on the size of substitution) of lookups. However, the variable-to-variable bindings occur
rarely in practice, and usually “walk” finds the required binding in one step. We can take the absence
of variable-to-variable bindings as our first criterion: for flat substitutions (substitutions without
such bindings) “walk” always makes only one lookup. We can relax this requirement by allowing a
constant number, independent of the input parameters of the topmost goal, of variable-to-variable
bindings.

Definition 4.1. A substitution σ is called constant-factor flat if the number variable-to-variable
bindings in σ does not depend on the input parameters of the topmost goal.

Lemma 4.2. If during the evaluation of a goal all substitutions are constant-factor flat, then the
time of any walk during that evaluation on substitution σ is lookup (σ ).

The unification of two terms goes by the standard recursive descent. Each time a variable is
encountered in a term being unified a “walk” step is performed. If it ends up with an unbound
variable the occurs check is performed and, if it succeeded, the substitution is extended. As the
substitution grows during the process the unified terms grow, too, and the descent can go beyond
the size of initial terms. But we argue that this happens not that often. For example, for a linear
case (when any variable occurs in unified terms at most once) the extensions of the substitution
during the unification do not affect the unification in other branches, so the recursion will stop at
the minimal height of the terms.

Lemma 4.3. Given two terms t1 and t2 and a current constant-factor flat substitution σ , if any
variable occurs at most once in at most one of the terms {t1σ , t2σ }, then the time this unification takes,
excluding occurs checks, is O (min {|t1σ |, |t2σ |}) · (lookup (σ ) + add (σ )).

In particular, if the size of one of those two terms does not depend on the input parameters
(which is usually the case) the unification performs a constant number of basic operations. This is
our second criterion: linearity and constant size of one of the terms in every unification.
In the presence of occurs checks, however, we need to also go through every term we add in

the substitution. This changes “min” in the estimation above to “max”, making a huge difference.
Roughly speaking, in average the number of basic operations for every unification with occurs
checks is approximately an average size of all terms unified in the program (which is usually
linear of the input). Therefore occurs checks add a huge time overhead for program execution in
miniKanren, both for asymptotics (see section 6) and for observable time [4]. This fact calls for an
investigation into ways of going around occurs checks in miniKanren. Although simply omitting
them is not an option for miniKanren, there are other known approaches (mostly explored for
Prolog), for example, static tests ensuring that occurs checks for a given program will never be
violated [2]. As far as we know, for now, there are no such solutions adopted for miniKanren.

For now, as we estimate the time of every individual unification it might be not clear how it
relates to the estimations for the scheduling time. But since we consider cases in which unification is
relatively fast (constant number of basic operations), the number of unifications during an execution
plays a more important role. And the number of unifications can be simply limited by the number
of semantic steps d (sinit (input)) (because every unification is a separate step in the semantics).
Similarly, although the time of basic operations depends on the size of substitution in different
points of execution, logical variables for these bindings come either from the input (where there
is usually a constant number of them) or from fresh variable allocations during the evaluation
(each of which is a separate step in the semantics). So the number of allocated logic variables and,
therefore, the maximum possible number of bindings are limited by FV (input) + d (sinit (input)).
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A Complexity Study for Interleaving Search 11

prefixo = λ n p →

(p ≡ Nil ) ∨
( fresh (n ' pt pti )

(n ≡ S (n ' ) ) ∧
(prefixo n ' pt ) ∧
(incr−listo pt pti ) ∧
(p ≡ Cons (S (O ) , pti ) )

)

incr_listo = λ a r →

( (a ≡ Nil ) ∧ (r ≡ Nil ) ) ∨
( fresh (h t tr )

(a ≡ Cons (h , t ) ) ∧
(r ≡ Cons (S (h ) , tr ) ) ∧
(incr_listo t tr )

)

Fig. 6. Relational Prefixes Example

So, for example, for a usual case, when our two criteria are satisfied and the input contains a
constant number of logic variables, for a standard implementation and without occurs checks the
total time of unifications Tuni is O (d (sinit (input)) · logd (sinit (input)))

The time of reificationTr can be estimated in the same way, since reification simply goes through
the resulting term similarly to occur check. So in the case when the resulting substitution is
constant-factor flat, the number of basic operations for the reification is limited by the size of the
output (multiplied by a constant). This time is usually dominated by the time of unification and
scheduling, but not always (see examples in section 6).

5 COMPLEXITY ANALYSIS VIA SYMBOLIC EXECUTION SCHEMES
In the previous sections, we presented some methods to estimate the time complexity for scheduling
and unification/reification (for the latter two only for some practical cases) in miniKanren, but
they work only for relational search in general, not for a specific relational program. In this section,
we show how the latter task can be formulated and how those methods can be combined to solve it
using a notion of symbolic execution. Specifically, we add symbolic variables to miniKanren and use
symbolic execution schemes to build recursive inequalities for all components of our performance
model. These inequalities then can be solved to provide a symbolic representation for asymptotic
estimations.
The application of symbolic execution for time complexity analysis is well-known and was

explored for logic programming in particular [6]. Usually, symbolic execution graphs are used to
capture all the details of program execution which are significant for performance, and then the
standard techniques for time (or other) analysis of rewriting systems are applied. In contrast, we
need symbolic execution graphs only as a neat representation of a general scheme of a relational
search for a given program and then bring in performance details using ad hoc methods described
in the previous sections. So we use a restricted version of a graph that corresponds precisely to a
body of a relation, not unfolding any relational calls. For this reason, we refer to them as “symbolic
execution schemes” rather than “symbolic execution graphs”. This also means that we suppose
that we know what answers any relational call in the program produces before we start the time
complexity analysis.
To present the whole process in a clearer way we will go through it with a specific artificial

example, in which almost all important details are presented. The example is a relational program
for generating all prefixes of a list [1, . . . ,n] (with numbers represented in Peano encoding with
constructors O and S). Consider the following creative recursive solution: we either take an empty
prefix or take any prefix for the same task for n − 1 (if n > 0), increment all the elements and add 1
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12 Dmitry Rozplokhas and Dmitry Boulytchev

at the beginning. The relation prefixo in Fig. 6, relating a number n to some prefix p, follows this
description directly. It uses a straightforwardly implemented relation incr−listo that increments
all numbers in a given list. This relation provides the required results: if we instantiate n with some
Peano number and put a free logical variable for p then p will be bound to every prefix exactly
once. It is an inefficient solution in many ways, but it is nice for presentation.
Now we want to estimate the time the search will take depending on a number we put as an

input. To make our reasoning more precise we introduce the notion of symbolic variables, which
we will denote with an overline (a,b, . . . ) as opposed to the usual logic variables, which we will
denote using a question mark (a?,b?, . . . ). The symbolic variables can be considered on two levels.
At the level of symbolic execution, each symbolic variable in miniKanren stands for some ground
term (a term without logic variables inside), but we do not know which term exactly. At the
metalevel, where we reason about the complexity of a program, a symbolic variable x stands for
a representation of some object x from metatheory (it can be a number, a string, or a graph, for
example) as a ground term, and we analyze how the program behaves depending on this object or
some of its parameters. We will distinguish between these two levels throughout the whole process
of complexity analysis. For our example we consider the parametric query prefixo k a? with the
first parameter instantiated by some number k represented as a ground Peano term and second
parameter left as a free logic variable, and ask how much time the search and its different stages
will take depending on the value of k .

Our approach estimates the time complexity for some specific relational call with symbolic
variables as arguments, not for a relation in general. We name every call we encounter to use these
names in our notations throughout the analysis (for example pre f = prefixo k a?). During the
analysis we separately compute a number of factors for the query that correspond to components
of the overall time of the search in our model: the number of semantic steps dpref (k) and the
scheduling factor tprefs (k), which correspond to the number of semantic steps and the scheduling
factor defined in section 3, tprefuni (k), which is the number of basic operations performed during
unifications in the execution of the call, excluding basic operations in occurs checks, tprefocc (k),
which is the number of basic operations performed during occurs checks, and tprefr (k), which is
the number of basic operations performed during the reification.
To achieve this, we build a symbolic execution scheme, mirroring the body of the examined

relation, identify recursive calls, and reconstructing recursive inequalities for all the aforementioned
factors by using the estimations described in the previous sections. We put a number of restrictions
for the examined relational call for our approach (however, as can be seen from the section 6, the
huge variety of real examples satisfy them): the two criteria from section 4 should be satisfied
(which we can check using the symbolic execution, too), relations should be in disjunctive normal
form.
We need to know also two extra pieces of information to perform the analysis for a given call.

First, to know how to proceed after recursive calls we need to know the answers that the calls
produce. We describe them by sets of substitutions binding all the logical variables in the query to
terms, possibly containing fresh logic variables and symbolic variables, the latter we then specify
in the metatheory (for example, ANSpref (k) = {[a? ← p] | p is a prefix of the list [1, ..,k]}).
Second, we need to know all information for non-recursive relational calls in the scheme (the
values of all the complexity factors, produced answers, whether the requirements are satisfied). So
we need to go and analyze these calls using the same approach before we can examine the given
call or reuse the information if we have already analyzed relevant calls before. For this reason,
we require the absence of mutual recursion in the examined calls (it should be eliminated using
standard techniques) and analyze them in the order of topological sorting. For pre f call we will
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incr-listo l r ?

ww ))
l ≡ Nil

{[] | l = Nil}
��

l ≡ Cons(h?, t?)

{[h?←x,t ?←l ′] | l = Cons(x, l ′)}
��

r ? ≡ Nil

{[r ?←Nil]}

��

r ? ≡ Cons(S(x), tr ?)

{[r ?←Cons(S(x), tr ?)]}
��

incr-listo l ′ tr ?

{[tr ?←sl ′] | lenдth(sl ′)=lenдth(l ′)∧∀i, sl ′[i]=l ′[i]+1}
��

Fig. 7. Symbolic execution scheme for the incr call

prefixo k p?

xx ))
p? ≡ Nil

{[p?←Nil]}

��

k ≡ S n?

{[n?←k ′] | k = S k ′ }
��

prefixo k ′ pt?

{[pt ?←l ] | l is a prefix of the list [1..k ′]}
��

incr-listo l pti?

{[pti?←l ′] | lenдth(l )=lenдth(l ′)∧∀i, l ′[i]=l [i]+1}
��

p? ≡ Cons (S(O), l ′)

{[p?←Cons (S(O), l ′)]}

��

Fig. 8. Symbolic execution scheme for the pre f call

need this information for the internal call incr = incr−listo l r ?, so we will analyze it first along
the way.
The symbolic execution scheme for the pre f call is shown in Fig. 8 and the scheme for the

internal call incr is shown in Fig. 7. A symbolic execution scheme shows unifications and internal
relational calls evaluated during the search for the initial call and the answers that are threaded
through the search. The initial call is at the top. For simplicity we work only with the relations
in disjunctive normal form, each disjunct is represented as a separate column on the scheme.
The nodes of the column are the unifications and relational calls in the given conjunct, they are
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14 Dmitry Rozplokhas and Dmitry Boulytchev

U (w?,w?) = ϵ

U (w?, t) = ⊥ ifw? ∈ FV (t)
U (w?, t) = [w? ← t] if t , w? ∧w? < FV (t)
U (t ,w?) = U (w?, t) if t is not a logic variable
U (x ,y) = [x ← y]
U (x , f (t1, . . . , tk )) = [x ← f (x1, . . . ,xk )] ◦U (x1, t1) ◦ · · · ◦U (xk , tk ) where xi are fresh
U (f (t1, . . . , tk ),x) = U (x , f (t1, . . . , tk ))
U (f (t1, . . . , tk ), f (t

′
1, . . . , t

′
k )) = U (t1, t ′1) ◦ · · · ◦U (tk , t

′
k )

U (f (t1, . . . , tk ),д(t
′
1, . . . , t

′
k ′)) = ⊥ if f , д

Fig. 9. Unification for terms with logic and symbolic variables; t stands for an arbitrary term.

written down sequentially in the same order as in the relation and connected by arrows. Arrows are
labeled with the description of a set of answers, produced by the previous node. This description is
represented as a set of lists of bindings for logical variables by which the substitution is extended,
the generator of the set (the condition after the ‘|’ symbol) is described in terms of metatheory. For
the analysis we need to distinguish cases when multiple answers are produced so we denote by a
single arrow ↓ the sets that we know to have no more than one answer, and put a double arrow ⇓
in other cases. The answers produced by internal relational calls are given as a prerequisite for the
analysis. The unifications may produce new substitutions for both logic variables and symbolic
variables. The definition of unification with both logic and symbolic variables is shown on Fig. 9.
Bindings for logical variables in the result are extensions of the substitution in the environment after
this unification, and bindings for symbolic variables are conditions for the objects in metatheory
represented by these symbolic variables, under which we continue to execute the current branch.
For example, the unification for x ≡ f (t1, . . . , tk ) will succeed only for object x such that its
representation is f (x1, . . . ,xk ), where xi are the representations which are the terms unifiable with
ti . So we add bindings for symbolic variables to the generator of the set in the form of equalities.
We apply bindings for both logic and symbolic variables in all nodes after we get them to show the
fully substituted values of terms.
This scheme presents all the information we need to check the criteria and calculate the com-

plexity of all the factors using the results from the previous sections.
(1) To check that all substitutions are flat during the evaluation we need to know that all non-

recursive internal calls satisfy this condition and to check that no variable-to-variable bindings
are added during the evaluation of the body of the relation. To check this we can simply
check that rhs of all bindings on arrows after unifications are not logical variables (then the
value in the binding necessarily has a constructor on the top-level).
If there are no recursive calls in the scheme, we can allow variable-to-variable bindings after
substitutions, since there will be at most a constant number of them and substitutions will
always be constant-factor flat.
The second criterion (linearity and constant size of one of the terms for every unification)
we can easily check directly: for every unification on the scheme each logical variable should
occur at most once and one of the terms should have no symbolic variables. We also need
the criterion to be satisfied for all the internal calls.
For the calls incr and pre f both criteria are satisfied.

(2) To estimate dincr (l) and dpref (k) we use lemmas 3.7 and 3.8. Specifically, we just add the
corresponding value for every internal call summed up for all the answers for which the
call is executed and also add a constant to handle the rest (unifications and fresh variable
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A Complexity Study for Interleaving Search 15

introductions). We know the value of dq (. . . ) for every internal call q: for non-recursive
internal calls we have the estimation up to a multiplicative constant from the previous
analysis, for recursive internal calls it’s just the value of the same function with a different
argument.
So, for the incr call we have:

dincr (l) ≤ C +
∑

l = Cons(x, l ′)

dincr (l ′)

Considering two cases when l is an empty and a non-empty list we can simplify the inequality
above into the following two:

dincr ([]) ≤ C
dincr (x : l ′) ≤ C + dincr (l ′)

which we can easily solve and get dincr (l) ∈ O (len (l)).
And for the pre f call we have:

dpref (k) ≤ C +
∑

k = S k ′

(dpref (k ′) +
∑

l is a prefix of the list [1..k ′]

dincr (l))

Which we can rewrite and simplify again by considering two cases and substituting calculated
complexity for dincr (l):

dpref (0) ≤ C

dpref (k ′ + 1) ≤ C + dpref (k ′) +
∑

i ∈[0..k ′]

C · i

≤ dpref (k ′) +C · k ′2

From which we get dpref (k) ∈ O (k3).
(3) For t incrs (l) and tprefs (k) we do basically the same using the same lemmas 3.7 and 3.8. The

difference is that for every internal callq alongwith tqs (. . . )we have to adddq (. . . )multiplied
by a constant (for recursive calls we use the complexity calculated at the previous step). There
is a possible exception, however (identified in the lemmas): for one column that has only
single arrows, we can omit additional dq (. . . ) for the last call in the column (if the column
ends with a call). By lemma 3.8 we can pick any column, it might make difference only when
this value dq (. . . ) dominates all the other values. In particular, in the case when a relation
has one recurisve call, if it is in the end of a conjunction we omit additional value dq (. . . ) for
this call, and when it is not in the end we can not omit this additional value (and can omit the
additional value dq (. . . ) for the last non-recursive call instead, which will be dominated by
the value tq (. . . ) for this call with a multiplicative factor anyway). This omission is precisely
the reason for the change in complexity when the recursive call is moved to the end, like in
the initial example of lengtho and lengthod relations in section 1. Likewise, for incr call we
omit additional value dincr (l ′) for the recursive call and get the same inequality as the one
for the number of steps:

t incrs (l) ≤ C +
∑

l = Cons(x, l ′)

t incrs (l ′)

So, t incrs (l) is also in O (len (l)).
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16 Dmitry Rozplokhas and Dmitry Boulytchev

In contrast, in pre f call the recursive call is not in the end, so we have additional value
dpref (k ′) for it, which affects the resulting complexity:

t
pref
s (k) ≤ C +

∑
k = S k ′

( t
pref
s (k ′) +

C · dpref (k ′) +∑
l is a prefix of the list [1..k ′]

(t incrs (l) +C · dincr (l)))

After the simplification, we get the following two inequalities:

t
pref
s (0) ≤ C

t
pref
s (k ′ + 1) ≤ C + t

pref
s (k ′) +C · k ′3 +

∑
i ∈[0..k ′]

(C · i +C · i)

≤ t
pref
s (k ′) +C · k ′3

And after solving them we get tprefs (k) ∈ O (k4).
(4) To estimate t incruni (l) and t

pref
uni (k) we just do the same summation, counting the number of

unifications in the scheme and in the internal calls.
For incr we have the following inequality:

t incruni (l) ≤ 1 + (
∑

l = Nil

1) + 1 +
∑

l = Cons(x, l ′)

(1 + t incruni (l
′))

The simplified version is the following:

t incruni ([]) ≤ C
t incruni (x : l ′) ≤ C + t incruni (l

′)

And the result is t incruni (l) ∈ O (len (l)).
And for pre f we have the following inequality:

t
pref
uni (k) ≤ 1+1+

∑
k = S k ′

(t
pref
uni (k

′)+
∑

l is a prefix of the list [1..k ′]

(t incruni (l)+
∑

l ′: lenдth(l )=lenдth(l ′)∧∀i, l ′[i]=l [i]+1
1))

The simplified version is the following:

t
pref
uni (0) ≤ C

t
pref
uni (k

′ + 1) ≤ C + t
pref
uni (k

′) +
∑

i ∈[0..k ′]

(C · i + 1)

≤ t
pref
uni (k

′) +C · k ′2

And the result is tprefuni (k) ∈ O (k
3).

(5) To estimate t incrocc (l) and t
pref
occ (k) we just do the same summation, counting the sizes of rhs in

bindings on arrows after every unification on the scheme and the same in the internal calls.
For incr we have the following inequality:

t incrocc (l) ≤ (
∑

l = Nil

|Nil|) +
∑

l = Cons(x, l ′)

(|x | + size(l ′) + |Cons(S(x), tr)| + t incrocc (l
′)),
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where size (l ′) =
∑
y∈l ′
|y |.

The simplified version is the following:

t incruni ([]) ≤ C
t incruni (x : l ′) ≤ C + 2|x | + size(l ′) + t incruni (l

′)

And the result is t incruni (l) ∈ O (len (l) · size (l)).
And for pre f we have the following inequality:

t
pref
occ (k) ≤ C +

∑
k = S k ′

(k ′ + t
pref
occ (k

′) +
∑

l is a prefix of the list [1..k ′]

(t incrocc (l)+∑
l ′: lenдth(l )=lenдth(l ′)∧∀i, l ′[i]=l [i]+1

|Cons (S(O), l ′)|))

The simplified version is the following.

t
pref
occ (0) ≤ C

t
pref
occ (k

′ + 1) ≤ C + k ′ + t
pref
occ (k

′) +
∑

i ∈[0..k ′]

(C · i3 +C · i2 +C)

≤ t
pref
occ (k

′) +C · k ′4

And the result is tprefocc (k) ∈ O (k
5).

(6) Finally, to estimate tprefr (k) we just sum the sizes of all answers from ANSpref (k).
t
pref
r (k) =

∑
l is a prefix of the list [1..k ]

size(l) ≤
∑

i ∈[0..k]

C · i2 ≤ C · k3

So tprefr (k) ∈ O (k3).
This way we get the complexity for all the components of the search. Now we can combine them

to get the complete estimation. To get the time related to the unification we should multiply tprefuni ,
t
pref
occ , tprefr by amultiplier (lookup (|σ |)+add (|σ |)))which we can estimate by (lookup (dpref (k))+
add (dpref (k)))). So, for example, for an implementationwith standard-librarymaps for substitutions
the complete time of the search for the call prefixo k a? is O (k4 + k3 logk + k5 logk + k3 logk) =
O (k5 logk) with occurs checks and O (k4 + k3 logk + k3 logk) = O (k4) without.

6 EVALUATION
We have applied the described approach of time complexity analysis to a number of standard
miniKanren relations. Specifically, we have analyzed relational operations for basic data types: for
Peano numbers (addition, multiplication, comparison) and lists (length, map, append, reverse), the
definitions can be found in appendix A. These are well-known relations with simple declarative
recursive definitions, often used as examples of relational programming, yet we could not find any
formal analysis of their time complexity. All the examples we studied satisfy the requirements of
our method and the extracted recursive inequalities are easily solvable, which supports the claim
that our method, although not universal, is adequately applicable in practice.
For every relation, we analyzed several queries (specifying different arguments with symbolic

variables) corresponding to different reasonable usages (for example, we examined usages of
addition relation for addition, subtraction, and decomposition of a number into a sum of two
numbers). For every query, we took the known optimal order of conjuncts in the relation (as the
time of the search hugely depends on this order [4]), which may be different for different queries.
We could perform the analysis with other orders the same way, but the results are not that useful
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Query ts tuni tocc tr
leo n m min(n,m) min(n,m) nm 0
leo x? m m m m2 m2

leo n y? n n n2 n
pluso n m r ? n n n2 +m n +m

pluso n y? k min(n,k) min(n,k) nk max(n −m, 0)
pluso x? y? k k k k2 k2

multo n m r ? n2m nm nm2 + n2m nm

multo x? m + 1 k k k k2 +mk k
m

multo (S x?) (S y?) k k2 k2 k3 k2

lengthod l r
? len2(l) len(l) len(l) · size(l) len(l)

lengtho l r ? len(l) len(l) len(l) · size(l) len(l)
lengtho a? n n n n2 n

incr−listo l r ? len(l) len(l) len(l) · size(l) size(l)

incr−listo a? l len(l) len(l) len(l) · size(l) size(l)

appendo l1 l2 r
? len(l1) len(l1) len(l1) · size(l1) + size(l2) size(l1) + size(l2)

appendo a? b? l len(l) len(l) len(l) · size(l) len(l) · size(l)

reverseo l r ? len3(l) len2(l) len2(l) · size(l) size(l)

reverseo a? l len2(l) len2(l) len2(l) · size(l) size(l)

Fig. 10. Calculated complexities for the example queries. len (·) stands for length of a given list, size (·) stands
for a total size of representation of a given list (sum of sizes of representations of all elements). Note that the

aspects of the search related to unification and reification (tuni , tocc , and tr ) are all measured in the number

of basic operations on substitution that take lookup (σ ) + add (σ ) time each.

and in those cases, the search often diverges. The results — the complexities for all the factors
characterizing different aspects of the search — are shown in Fig. 10. Note that sometimes the time
depends not on the size of the terms substituted for symbolic variables, but on some characteristics
of the values these terms represent (in these cases, length of the list). In all cases, the time is
polynomial on the size of the input.
From these results, we can infer some conclusions about the factors influencing the time of

evaluation in miniKanren.
First, the overhead of occurs checks is immense in terms of time complexity. In all cases, this

component dominates all others, usually incrementing the degree of the polynomial. This contrast
is shown more clearly in Fig. 11 where the total time of the search for the standard implementation
with and without occurs check is given.

Second, we can see that sometimes a rather counter-intuitively running execution “backwards”
(specifying the supposed result in a relation instead of supposed arguments) is faster than the
intended “forward” execution. For example, the division via multiplication relation is faster than
multiplication itself, the list reversing is faster if we specify the result and ask for a suitable argument.
If we look closer into these examples we can see that the reason for this is the fact that the optimal
order of conjuncts for backward execution has the recursive call at the end while the optimal order
of conjuncts for forward execution does not. When the recursive call is not the last it forces us
to add the number of semantic steps for this call when calculating the scheduling factor, which
often increases the complexity. This supports a well-known rule of thumb in miniKanren which
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Query without occurs checks with occurs checks
leo n m min(n,m) · logmin(n,m) nm · logmin(n,m)
leo x? m m2 logm m2 logm
leo n y? n logn n2 logn

pluso n m r ? (n +m) logn (n2 +m) logn
pluso n y? k min(n,k) · logmin(n,k) nk · logmin(n,k)
pluso x? y? k k2 logk k2 logk
multo n m r ? n2m lognm (nm2 + n2m) lognm

multo x? m + 1 k k logk (k2 +mk) logk
multo (S x?) (S y?) k k2 logk k3 logk

lengthod l r
? len2(l) · log len(l) len(l) · size(l) · log len(l)

lengtho l r ? len(l) · log len(l) len(l) · size(l) · log len(l)
lengtho a? n n logn n2 logn

incr−listo l r ? len(l) · log len(l) len(l) · size(l) · log len(l)
incr−listo a? l len(l) · log len(l) len(l) · size(l) · log len(l)
appendo l1 l2 r

? (size(l1) + size(l2)) · log len(l1) (len(l1) · size(l1) + size(l2)) · log len(l1)
appendo a? b? l len(l) · size(l) · log len(l1) len(l) · size(l) · log len(l)
reverseo l r ? (len3(l) + size(l)) · log len(l) len2(l) · size(l) · log len(l)
reverseo a? l (len2(l) + size(l)) · log len(l) len2(l) · size(l) · log len(l)

Fig. 11. Complexities of the total time of the search for the example queries with and without occurs check.

The standard implementation of substitution is considered (using standard library maps), so log |σ | is taken
as a time of basic operations on substitution. For other implementations of substitutions, this factor should

be changed to the appropriate one.

recommends placing recursive calls at the end of conjunctions whenever possible. We can now see
that one reason for it is smaller time penalty of scheduling discipline.1

To check how well our estimates correspond to the reality we implemented a simple embedding
of miniKanren into OCaml and measured the time of the search for the example queries, building
graphs for the time vs. parameters in the estimated complexity (distinct plot for each parameter). 2
The referenced embedding follows the standard microKanren implementation but with standard
library maps for substitutions and with the possibility to switch occurs check on and off. For time
measuring we used standard OCaml library benchmark. The precision we were able to achieve is
rather limited, so the plots are not always smooth and can have deviations (especially for small
sizes of the input), but the overall trend is usually clear. Because of the problems with precision, for
now, we are able to adequately measure only the total time of the search, with or without occurs
check, so we are basically verifying only the Fig. 11. The example of the resulting graph is shown in
Fig. 12 (the time of addition of two numbers depending on the first argument). The character of a
time dependency function is not always visible from the graph (when the degree of the polynomial
is greater than one), but after studying each graph individually (for example, by placing the plot

1There are other reasons. For example, executing all constraints before possibly diverging relational calls is one of the
methods of ensuring termination of relational programs [4].
2The implementation and the results of the measuring can be found at https://www.dropbox.com/sh/ciceovnogkeeibz/
AAAoclpTSDeY3OMagOBJHNiSa
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Fig. 12. The graph for the addition query showing the dependency of total time (in seconds) of the search for

the query pluso nm r ? on the value of n with a fixedm. Purple dots show the time for the case when occurs

checks are performed, green dots — for the case when they are not performed.

between two polynomials of the same degree) we are reasonably convinced that all the complexity
estimates from the Fig. 11 are confirmed.

7 CONCLUSION
We presented a first attempt to build a theory that would allow one to calculate adequate worst-case
time complexity estimations for relational programs in miniKanren. While our research is not
completed the current results still allow explaining some observable phenomena in some relational
programs behavior.

For now, we confine ourselves to the problem of estimating the time of the full search for a given
query. Estimating the time before the first (or some specific) answer is found is an important and
probably more practical task. Unfortunately, the described model can not be adjusted naturally to
this case. The reason for this is that the reasoning about time (scheduling time in particular) in our
terms becomes non-compositional for the case of interrupted search: if the answer is found in some
branch, the search is cut short in other branches too. We can still calculate the number of semantic
steps for this case, just focusing on one branch in such cases. But for the scheduling factor this
will not work, because the size of states can be different in different branches, so the equal number
of semantic steps can take different amounts of time in different branches. This picture requires
more complicated notions with non-trivial dependencies between them and the model becomes
impractical. We are currently looking into ways to tame it.
Among other directions for future research, we can mention relaxing the requirements which

we put on terms and substitutions in order to provide accurate unification time estimations. It
would be also interesting to come up with an automated (or semi-automated) procedure to deduce
the complexity estimations in symbolic forms by making use of the symbolic execution model
presented in Section 5.
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A DEFINITIONS OF THE EVALUATED RELATIONS
Here are the definitions of the miniKanren relations we used for evaluation. Different queries to
the same relation may require different orders in conjunctions.

(1) Comparison of Peano numbers
Definition:

leo = λ x y →

(x ≡ O ) ∨
( fresh (x ' y ' )

(x ≡ S (x ' ) ) ∧
(y ≡ S (y ' ) ) ∧
(leo x ' y ' )

)

For queries:
- leo n m
- leo x? m
- leo n y?

(2) Sum of Peano numbers
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Definition:
pluso = λ x y r →

( (x ≡ O ) ∧ (y ≡ r ) ) ∨
( fresh (x ' r ' )

(x ≡ S (x ' ) ) ∧
(r ≡ S (r ' ) ) ∧
(pluso x ' y r ' )

)

For queries:
- pluso n m r ?

- pluso n y? k
- pluso x? y? k

(3) Product of Peano numbers
Definition #1:

multo = λ x y r →

( (x ≡ O ) ∧ (r ≡ O ) ) ∨
( fresh (x ' r ' )

(x ≡ S (x ' ) ) ∧
(multo x ' y r ' ) ∧
(pluso r ' y r )

)

For query:
- multo n m r ?

Definition #2:
multo = λ x y r →

( (x ≡ O ) ∧ (r ≡ O ) ) ∨
( fresh (x ' r ' )

(x ≡ S (x ' ) ) ∧
(pluso r ' y r ) ∧
(multo x ' y r ' )

)

For queries:
- multo x? m + 1 k
- multo S(x?) S(y?) k

(4) Length of a list
Definition #1:

lengthod = λ a r →

( (a ≡ Nil ) ∧ (x ≡ O ) ) ∨
( fresh (h t r ' )

(a ≡ Cons (h , t ) ) ∧
(lengthod t r ' ) ∧
(r ≡ S (r ' ) )

)

For query:
- lengthod l r

?
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Definition #2:
lengtho = λ a r →

( (a ≡ Nil ) ∧ (x ≡ O ) ) ∨
( fresh (h t r ' )

(a ≡ Cons (h , t ) ) ∧
(r ≡ S (r ' ) ) ∧
(lengtho t r ' )

)

For queries:
- lengtho l r ?
- lengtho a? n

(5) Incrementing all elements in a list
Definition:

incr_listo = λ a r →

( (a ≡ Nil ) ∧ (r ≡ Nil ) ) ∨
( fresh (h t tr )

(a ≡ Cons (h , t ) ) ∧
(r ≡ Cons (S (h ) , tr ) ) ∧
(incr_listo t tr )

)

For queries:
- incr_listo l r ?
- incr_listo a? l

(6) Concatination of two lists
Definition:

appendo = λ a b r →

( (a ≡ Nil ) ∧ (b ≡ r ) ) ∨
( fresh (h t tb )

(a ≡ Cons (h , t ) ) ∧
(r ≡ Cons (h , tb ) ) ∧
(appendo t b tb )

)

For queries:
- appendo l1 l2 r ?
- appendo a? b? l

(7) Inversion of a list
Definition #1:

reverseo = λ a r →

( (a ≡ Nil ) ∧ (r ≡ Nil ) ) ∨
( fresh (h t tb )

(a ≡ Cons (h , t ) ) ∧
(reverseo t tr ) ∧
(appendo tr Cons (h , Nil ) r )

)

For query:
- reverseo l r ?
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Definition #2:
reverseo = λ a r →

( (a ≡ Nil ) ∧ (r ≡ Nil ) ) ∨
( fresh (h t tb )

(a ≡ Cons (h , t ) ) ∧
(appendo tr Cons (h , Nil ) r ) ∧
(reverseo t tr )

)

For query:
- reverseo a? l
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