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Synthesizing quines with a relational interpreter in miniKanren is a relatively simple but not infrequently arresting example.
We exhibit several related, novel synthesis tasks—either pre-existing programming challenges we newly solve with miniKan-
ren synthesis, or newly formulated challenges of our own. In doing so we exhibit a relational interpreter for a “mirrored”
language. These examples demonstrate miniKanren’s potential and versatility as a platform or substrate for experimenting on
executable program specifications. As with quines, these examples are themselves interesting from a theoretical perspective,
may also suggest other, more practical future applications.

CCS Concepts: « Theory of computation — Constraint and logic programming; « Software and its engineering —
Constraint and logic languages; Automatic programming;
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Difficult mathematical type exercise: Find a list e such that
value e = e.

John McCarthy, A micro-manual for LISP-not the whole truth

1 INTRODUCTION

Constraint-logic and relational programming languages such as miniKanren have found application in program
synthesis tasks [7]. Although Kanren languages are also applicable to many of the standard logic programming
tasks, such synthesis applications have arguably become Kanren languages’ foremost specialty.

Generating quines is an early, not-infrequently arresting example of relational programming and of relational
program-synthesis in miniKanren [8]. In his book Gédel, Escher, Bach, Hofstadter coined “quining” to mean
“the operation of preceding some phrase by its quotation”. This self-reference guarantees a quine—a program
that evaluates to its own source code—in any sufficient programming language (e.g., the language of Listing 1).
The existence of quines follows from Kleene’s second recursion theorem (see e.g., Moschovakis [22] for details).
Lee [16] and Thatcher [29] exhibit early examples of Turing machines that print their own descriptions. Bilar
and Filiol [3] credit Hamisch Dewar with producing the earliest known self-replicating program, written in Atlas
Autocode at the University of Edinburgh in the 1960s. The traditional, textbook proofs of quines’ existence (e.g.,
Yasuhara [32, p. 102]) uses Godel encodings of Turing machines, and is a bit afield from the programmer who
wants to experiment.

This same demonstration is more straightforwardly expressed in miniKanren with the query in Listing 1. We
remind the reader that when miniKanren constrains the synthesized programs’ variables, these constraints are
most often to exclude distinguished tags on defunctionalized closures, to prevent shadowing special forms in
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> (run 1 (q) (evalo q q))

“((((A (0) (list 0 (list 'quote 0)))
"(AM (0) (list 0 (list 'quote 0))))
(=/= ((_0 closure)) (( 0 list)) (( 06 quote)))
(sym _0)))

Listing 1. Querying against a relational interpreter for a quine

> (run 1 (v t ugqp)
(all-diffo '(v t u q p))
(evalo g p) (evalo p q) (evalo u q) (evalo t u) (evalo v t))

SOCCTTTT (N (0) (list 'quote (list O (list 'quote 0))))

"(AM (_0) (list 'quote (list 0O (list 'quote 0)))))

"CU((A (0) (list 'quote (list 0 (list 'quote 0))))
' 0) (list 'quote (list 0 (list 'quote 0)))

)

)

(A (_ 0)))))
"((A (0) (list 'quote (list 0 (list 'quote 0)))
"(AM (0) (list 'quote (list 0 (list 'quote 0)))))
"((A (0) (list 'quote (list O (list 'quote ))
(A )
)
)

) 0))
0) (list 'quote (list O (list 'quote 0)
))
))

(
((A (0) (list 'quote (list O (list 'quote 0)
"(AM (_0) (list 'quote (list O (list 'quote 0O )))
(=/= ((_0 closure)) (( 0 list)) (( 6 quote)))
(sym _0)))

Listing 2. Successful query for a binary iterating quine with a three-step transient.

the environment, or to restrict a logic variable to a sub-sort of the domain (e.g., the symbols). The language of
Listing 1’s interpreter, evalo, can produce only proper quines. Briefly, a proper quine has distinguishable and
separable data and code components (disqualifying blank files or self-evaluating literals) and that does not reflect
on its source code, e.g., through the file-system.! No interpreter in this paper can produce an improper quine,
and so we use “quine” as a shorthand without ambiguity.

miniKanren can produce still more complicated examples with similar techniques. Byrd et al. [8] show how
to implement “twines” (twin-quines) and “thrines” as well. The relational interpreter makes producing exam-
ples of such programs trivial with similar, slightly more sophisticated queries. Pagiamtzis [25] defines an os-
cillating quine with initial transients, by analogy to electrical engineering, as a sequence of distinct programs
D0s+ - s Pk—15 Pk - - - » Pn, Where each p; evaluates to p;q, and where p, evaluates to pi. More precisely, this se-
quence of programs forms an n — k-quine cycle with a k — 1 initial transient. Listing 2 demonstrates the query for
such a program. The auxiliary all-diffo relation imposes disequality constraints between every two programs
piand p;, i # jin that list. From left to right, the first two evaluations in the query describe the quine cycle,
and the remaining three evaluations describe the antecedent transient programs, in reverse order. miniKanren
uses an interleaving depth-first search (see Rozplokhas et al. [27]) biased toward earlier successful branches of
the search [31, p. 18]. In this order, miniKanren spends more of its search time looking for a twine, and with a
twine in hand miniKanren can quickly synthesize the antecedent programs.

See Madore [18] or the Quine contest rules at codegolf. meta.stackexchange.com/questions/4877 for more.
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(define-relation (tsil-reporpo pxe vars env lav)
(conde

[(== "(tsil) pxe)

(== "() lav)]

[(fresh (a d t-a t-d)
(== "(,a . ,d) pxe)
(== "(,t-a . ,t-d) lav)
(fo-lavo a vars env t-a)
(tsil-reporpo d vars env t-d))]))

Listing 3. The tsil-reporpo help relation for the fo-lavo of Listing 4

Self-replicating programs do make occasional appearances in applied research, especially in security [30].
Writing quines, however, is usually a hacker’s pastime (or even art [5]). Generating quines is not in and of itself
an especially practical example of program synthesis. Byrd et al. [7] demonstrate that generating quines can be
a first step toward more complex, useful synthesis tasks. We find this paper’s novel miniKanren synthesis tasks
interesting for similar reasons. To more practically-oriented readers we suggest that—like the earlier quine
generation results—even if the programs we synthesize here are not themselves practically interesting, they
may suggest related programs with practical applications and future uses of similar techniques to construct
such related practical programs. Some of these tasks (e.g., Section 6) are novel in that the authors have found
no earlier references that address the questions we raise and have not seen their specifications beyond our
own work. We find intrinsically motivating how relational synthesis techniques suggest simple, novel, and
(subjectively) interesting program specifications. Our other synthesis examples’ specifications are not in and of
themselves novel, but usually presentations offer these tasks as coding challenges for programmers; the authors
are unaware of previous miniKanren syntheses of such programs. These examples also explore the space of
programs and demonstrate how to experiment with a relational interpreter.

In Section 2 we introduce a version of Byrd et al’s [8] relational interpreter with a reversed syntax and ex-
plain its implementation’s unique bits. Then in Section 3 we remind the reader of polyglots and demonstrate
a successful query for valid structurally-palindromic programs. In Section 4, we describe a technique for gen-
erating quine-relays. In Section 5, we synthesize programs that bootstrap quines. In Section 6, we specify a
kind of quasi-quine cycles, exhibit both trivial and non-trivial programs that meet the specification and gener-
alize this result to broader classes of such programs. In Section 7 we describe related synthesis work, and in
Section 8 we conclude. The examples of Sections 2, 3 and 6 were previously published in Hemann [13, chap. 4].
At github.com/jasonhemann/novel-miniKanren-synthesis-tasks we provide the source code for our examples as
well as instructions to execute it. In places we have slightly reformatted the output for spacing and clarity.

2 MIRRORED LANGUAGE INTERPRETER

Many of the following synthesis problems involve executing programs across multiple languages. To that end,
we implement a relational interpreter like that of Byrd et al., but with the language’s syntax reversed. That is, a
program ((A (arg) (list arg)) (quote cat)) would be ((cat etouq) ((arg tsil) (arg) adbmal)) in this
reversed language. The two languages have the same semantics, only the concrete syntax has changed.

Listing 4 contains the mirrored language interpreter. While the syntax of the language is mirrored, the internal
representations of closures and environments are not. Naturally enough, we named this relation laveo, which
calls to fo-lavo. The one interesting difference is that testing for tsil expressions now requires a help relation.
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(define-relation (laveo pxe lav)
(fo-lavo pxe '() '() lav))

(define-relation (fo-lavo pxe vars env lav)

(conde
[(fresh (v)
(== " (,v etouq) pxe)

(absento 'etouq vars)

(absento 'closure v)

(== v lav))]
[(absento 'tsil vars)
(absento 'closure pxe)
(tsil-reporpo pxe vars env lav)]
[(symbolo pxe) (lookupo pxe vars env lav)]
[(fresh (rotar dnar x ydob vars™ env” a)

(== " (,dnar ,rotar) pxe)

(fo-lavo rotar vars env " (closure ,x ,ydob ,vars™ ,env?))

(fo-lavo dnar vars env a)

(fo-lavo ydob " (,x . ,vars®) "(,a . ,env?) lav))]
[(fresh (x ydob)

(== "(,ydob (,x) adbmal) pxe)

(== " (closure ,x ,ydob ,vars ,env) lav)

(symbolo x)

(absento 'adbmal env))]))

Listing 4. The fo-lavo evaluation relation with a split environment and the laveo relation front end

Unification can immediately separate the first element of a list from the rest, however, matching against the last
element of a list requires arbitrary recursion. To this end we implemented the help relation tsil-reporpo in
Listing 3, a mirrored “proper list” relation that describes reversed proper lists.

That the two languages have the same semantics (they are isomorphic) is inconsequential in the following. It
is important, however, that we have relational interpreters for two languages with overlapping syntaxes. More
precisely still, for these results we need programs in the language of one interpreter to produce, as data, certain
classes of programs in the language of the second interpreter.

3 PALINDROME PROGRAMS

Polyglots are programs valid in more than one language. In Listing 5, we query for programs that are well-formed
in both the language of the standard relational interpreter and also Listing 4’s interpreter’s mirrored language.
We query for a single program q that evaluates in both interpreters. We do not require that the two values be
equal; the problem statement only demands that the programs have a value under each interpretation.

For the special case of these two relational interpreters, whose languages are mirror images of each other, these
polyglot programs are also palindromes. The programs are not literally, character for character palindromes.
Instead, they are palindromic in that their syntax trees are mirror images. Racket’s default printer slightly
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> (run 3 (q) (fresh (a b) (evalo q a) (laveo q b)))
"('etouq

((A (_0) adbmal) (sym 0))

((A (adbmal) adbmal) (A (A) adbmal)))

Listing 5. “Mirrored programs” that evaluate in both languages

> (run 1 (q) (fresh (p) (laveo p q) (evalo q p)))
"((C(AN (L 0) (list (list O (list 'quote 0)) 'etouq))
"(M (0) (list (list 0O (list 'quote 0)) 'etouq)))

(=/= ((_0 closure)) (( 6 list)) (( O quote)))
(sym _0)))

Listing 6. A relational query for the first entry of a 2-cycle quine relay

obscures this, since it uses abbreviations for quote and lambda. We could, however, overcome this imbalance
by installing a printer that either removes these abbreviations or provides analogous abbreviations for their
mirrored counterparts.

4 QUINE RELAYS

Quine relays (or “ouroboros programs”) are n-cycles of programs where each program p; in the cycle evaluates
to the program p;;; (mod n). To preclude trivial quine relays, the problem statement usually requires a cycle
of distinct programs, and further that each program be written in a different programming language.

In Listing 6 we query miniKanren using the same two relational interpreters to synthesize a program p that in
the language of the first interpreter evaluates to a program q in the language of the second interpreter, which it-
self then evaluates to p. The calls to the two different interpreters guarantee that the resulting pairs of programs
will be in different languages; we do not have to overtly stipulate that the languages be different or write pred-
icates to recognize each language’s programs. If we had instead merged the two evaluation relations into one,
we would then need to recursively specify the programs of each language to properly state our query. Further,
because the only overlap in the two interpreters’ languages are quoted (etouq’d) expressions, we do not need to
explicitly stipulate that the programs be different with a disequality constraint.

miniKanren’s first solution is not especially revealing. Rather than the self-quoting behavior often seen in
miniKanren twines (e.g., Listing 2), miniKanren has generated a self-etouqing expression. The quine cycles
example does demonstrate an interesting facet of miniKanren’s behavior. In queries for twines, the order of the
calls to the interpreter make little to no difference, since both calls are to the same interpreter. For quine cycles
though, reordering the calls can make a significant difference. miniKanren takes significantly longer to answer
Listing 7’s version of this query. Further, the answer largely reverses the roles of the two interpreters. The
query’s result is a self-quoting (that is, with the real quote of the standard interpreter) program, largely written
in the language of the mirrored interpreter of Section 2. The result program is similar to, but not precisely, a
mirrored version of the more traditional-looking result program from Listing 6. Reversing the order of the two
evaluations biases miniKanren’s search toward the already-partially successful branches of quoted programs
when evaluating in laveo. tsil expressions cost more to evaluate than list expressions, and we believe this
difference explains some of the overall performance disparity.
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> (run 1 (q) (fresh (p) (evalo q p) (laveo p q)))
(" ((('etouq
(0
(((_ 0 (etouq etouq) tsil) ( 1 etouq) tsil)
(( 1) etouq)
(adbmal etouq)
tsil)
tsil)
tsil)
(_0)
adbmal)
((((('etouq
(0
(((_ 0 (etouq etouq) tsil) ( 1 etouq) tsil)
(( 1) etouq)
(adbmal etouq)
tsil)
tsil)
tsil)
(_0)
adbmal)
etouq)
_1)
(1)
adbmal))
(=/= ((_ 0 closure)) (( 0 etouqg)) (( 0 tsil)) (( 1 closure)) (( 1 etouq)))
(sym 0 _1)))

Listing 7. A second relational query for a 2-cycle quine relay, reordering the evaluations

5 BOOTSTRAPPING, RECOVERING QUINES

David Madore, author of the unlambda language, on his Quines page [18] inadvertently describes yet another ap-
plication of synthesis by relational interpreter. Madore describes how, by executing a near-quine program whose
“source code” portion is damaged, mangled, or otherwise modified, we might recover the original quine. Some
quines are then, to a degree, self-healing programs: for certain damage, executing the damaged program boot-
straps the quine, and recovers the original, undamaged source. In Listings 8 to 11 we query for three such near-
quine “damaged-code” programs that, when invoked, produce a quine. The query stipulates via (absento p s),
an additional constraint, that we will exclude somewhat trivial cases like nullary damage (we can view quines as
trivially, vacuously bootstrapping themselves) or programs simply containing the quine itself as data. Without
these restrictions, in fact, the bootstrap programs are precisely the initial transients of oscillating 1-cycle quines
with a single initial transient.

We break up the list of results over Listings 9 to 11. The first program miniKanren returns is a-equivalent to a
quine. The bootstrap program differs from the quine it produces only in the names of code portion’s lambda ex-
pressions’ variables. miniKanren constrains the variables 0 and _1 in the answer with a disequality, maintaining
the query’s requirement that p is absent from s. These subsequent results are also interesting.
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> (run 3 (q)
(fresh (p r s)
(==q "(,s ,r))
(absento p s)
(evalo "(,p ,r) “(,p ,r))
(evalo "(,s ,r) “(,p ,r))))

’

Listing 8. Query bootstrapping quines from “damaged” source code.

"((((AN (. 0) (list 0 (list 'quote 0)))

)
1) (list 1 (list 'quote 1))))

(A (L
(=/= ((_0 1)) (( 0 closure)) (( 0 list)) (( 06 quote))
(( 1 closure)) (( 1 list)) (( 1 quote)))
(sym 0 _1))
Listing 9. First result for the query in Listing 8
((C(A (0) (A (1) (Uist 1 (list 'quote 1)))) ' 2)
"(A (3) (list 3 (list 'quote 3))))
/ 0 list)) ((_0 quote)) ((_6 A))

(
(1 3)) ((1 closure)) (( 1 list)) ((_ 1 quote))

(3 closure)) (( 3 list)) ((_3 quote)))

(sym 0 1 3)

(absento ((A ( 3) (list 3 (list 'quote 3))) 2) (closure 2)))

(
(
(=/=(
(
(

Listing 10. Second result for the query in Listing 8

For this second result, two constraints on the answer bear particular mention. First, 1 must not equal _3,
since by the query’s absento constraint the resulting quine’s operator, (A (_3) (list _3 (list 'quote _3))),
must not be present in the operator of the bootstrap program. That same absento induces the restriction on _2
in the presented answer.

We choose to include Listing 11 and the third result because it showcases a good example of miniKanren
generating a non-trivial bootstrap program. This bootstrap program, when executed, constructs the subsequent
quine’s operator lambda expression from quoted pieces. Taken together, these results may appear to the reader
as “strategically” damaged source code, reverse-engineered. Bootstrapping from damaged quine code may feel
more realistic in a lower-level language closer to the machine’s representation. The specification we describe
via our queries, however, would not change, and from miniKanren’s complete search we know every answer
occurs at some point in the sequence of results.

6 QUASI-QUINES AND QUASI-QUINE CYCLES

The query in Listing 12 asks not for quines, but instead a sub-expression g that, when applied to itself, returns
itself as the result. This question arose while we were experimenting with a relational interpreter. We invite the
reader to stop a moment and consider—does something like that exist? What would one look like? Absent the
relational interpreter approach, how would you construct one?



20

21

22

23

24

9 « Hemann and Friedman

(((x (L0)

(list (list 'A '( 1) '(list 1 (list 'quote 1))) (list 'quote 0)))
"(M (1) (list 1 (list 'quote 1))))
(=/= ((_0 closure)) (( 0 list)) ((_O quote))
(( 1 closure)) ((_1 list)) ((_1 quote)))
(sym _0 _1)))

Listing 11. Third result for the query in Listing 8

> (run 2 (q) (evalo "(,q ,q) q))

Listing 12. Query for trivial and non-trivial quasi-quines q

'(quote
(((A (0) (A (1) (list 0 (list 'quote 0))))
(N (0) (A (1) (list 0 (list 'quote 0)))))
(=/= ((_0 _1)) ((_0 closure)) ((_06 list)) ((_0 quote)) ((_0 A))
((_ 1 closure)) ((_1 list)) ((_ 1 quote)))
(sym 0 _1)))

Listing 13. Query for non-trivial quasi-quines q

(run 1 (a b c)

(fresh (t)
(==t "((,a ,b) (,b ,c) (,c ,a)))
(=/=ab) (=/=b c) (=/=c a)
(evalo "(,a ,b) c)
(evalo "(,b ,c) a)
(evalo "(,c ,a) b)))

Listing 14. Query for the triplet of expressions a, b, ¢ that form a stuttered quine 3-cycle

miniKanren quickly finds a first answer: quote. In the language of the interpreter, as in Scheme, (quote quote)
evaluates to quote. The first result of this query is trivially satisfiable. We present the first and second answers
in Listing 13, where for readability we expand the first quote result from Racket’s printer. The second answer is
non-trivial, and looks closer to the usual quine answers, but parameterized additionally in both code and data by
a “don’t care” variable. The disequality constraint between 0 and 1 differs from either of the two superficially
similar examples we discussed in Listings 9 and 10. Here, the disequality constraint is necessary to prevent
shadowing, lest the “don’t care” variable actually matter to the result.

Now suppose we wish to construct a triplet of distinct expressions a, b, and c so that the expressions (a b),
(b c),and (c a) evaluate respectively to c, a, and b. Such programs are not the thrines discussed in Section 1.
As far as we know, there is no canonical name for the program cycles with this property; we’ve nicknamed
them “quasi-quine cycles”, or “stuttered-quine cycles”. We find even our clearest prose specifications for such
programs wordier and more opaque than simply reading this program triplet’s specification directly from the
miniKanren query itself.
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OO (L0)

(A (1)
(list
‘A
(_2)
(list
‘quote
(list 'A '"(_0) (list 'quote (.1 ' 3)))))))
(A (_2)
(A (L0)
"N (1)
(list
‘A
(_2)
(list
'quote
(list 'A '(_0) (list 'quote (.1 ' 3))))))))
(A (1)
(list
‘A

"(2)
(list 'quote (list 'A '( 0) (list 'quote (.1 ' 3)))))))
(=/= ((_0 closure)) ((_0 quote)) (( 1 closure)) ((_ 1 list))
((_1 quote)) (( 2 closure)) (( 2 quote)))
(sym 0 1 2)
(absento (closure 3))))

Listing 15. Result of query in Listing 14

Listings 14 and 15 contain this augmented query and the first program triplet that miniKanren returns. The
answers, again, are non-trivial. The authors were not certain what to expect when initially formulating these
queries. We had not predicted the trivial answers. After first discovering the trivial results, we still were not
sure that miniKanren could produce more interesting answers. One of the facets that makes miniKanren a
worthwhile synthesis platform is the ease with which we can formulate specifications as executable miniKanren
queries and run experiments.

7 RELATED QUINE-LIKE SPECIFICATIONS AND MINIKANREN SYNTHESIS TASKS

Self-reference is a broad, general phenomenon well-studied across many different contexts [28]. While of wide
theoretical interest, the contortions required to express self-reference in many systems make it generally unus-
able as a practical technique. Self-reference is significantly easier to express, though, in systems with quotation.
Little [17] and Polonsky [26] formalize the properties of quotation and syntactic self-reference and suggests di-
rections for constructing languages with facilities for practically useful self-reference. Even just defining a class
of non-trivial self-replicating systems has proved somewhat difficult, and recent efforts point to a non-binary
sliding scale [1]. Quines are generally regarded among the more trivial kinds of self-replication; the examples
we present here are of similar complexity.
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Myhill [23] describes the general theory of self-reproduction, and mentions producing identical offspring as
the simplest variety. His discussion includes varieties of automata that take no input, and also posits infinitely-
descending chains of automata-generating automata. Myhill also suggests self-improving automata, and even
automata that are the mirror-image of their parent. Case [9] studies machine lineages and the problem of de-
ciding if a particular machine starts an infinite sequence, and if so, whether that sequence is periodic. “Periodic
chains” is another description for those bootstrapped n-cycles. Kraus’s [15] recently rediscovered MS thesis
is something of a bridge between this earlier work and the application to computer virology. In it he also de-
scribes a wide variety of self-replicating adjacent programs, several of which we have synthesized here. Where
quines do appear in security and computer virology, it’s frequently in some deep and interesting places, such
as in Thompson’s [30] “Reflections on Trusting Trust” Gratzer and Naccache [12] offer a more recent example,
showing how quines can help secure software systems, rather than undermine them.

Program synthesis is a broad research area with interdisciplinary connections to programming languages,
machine learning, artificial intelligence and regular conferences in its own right. Unsurprisingly it also has
deep connections to logic and specification. In its early form, synthesis research dates back to Church [10] in
1957. Manna and Waldinger [19] developed an influential model for synthesizing from a logical statement of the
specification programs guaranteed-correct with respect to that specification. More recently, the syntax-guided
synthesis [2] approach has gained traction. In syntax-guided synthesis, the user also provides partial template(s)
as additional synthesis aids. Kanren-style relational interpreters take advantage of partial program templates.
Their problem space, however, is much more general than the relatively straightforward synthesis problems we
address here.

Byrd et al. [7] solve a problem nearly the inverse of polyglots. Instead, they evaluate the same concrete syntax
under distinct semantics, in their case lexical and dynamic scope. These are orthogonal directions, and we could
certainly mix and match distinct semantics and different (but not disjoint) syntaxes for even more interesting
queries.

8 CONCLUSIONS

We have presented several instances of more general classes of well-known problems, sometimes presented as
challenges or contests. Through surveying these myriad exemplary problems and their uniform solutions, we
have demonstrated the power, simplicity, and convenience of miniKanren as a language for solving these quine
and quine-like synthesis problems. We have used relational programming techniques to synthesize curious
programs across multiple languages, including polyglot “palindrome programs”, quine relays, and some stuttered
quine-like programs. Our straightforward, declarative solutions to instances of so many diverse pre-existing
problems should evidence miniKanren expressiveness. That these aren’t artificially created problems, but largely
known and pre-existing challenges further buttresses this claim.

These problems can play the role of “litmus tests” to assess, express, and checkpoint the power of relational
language design and implementation. We do not claim the utmost immediate application. Applications, however,
often present themselves when there is foundational research to apply. Research should not limited to that which
can be put to immediate practical use. We think it also important that we consider here concrete synthesis
problems in a broader context of computability theory. Distillation research [24] is itself a meritorious aim, and
to the degree we fulfill this role, that too is a research contribution.

Although not as well known as quines themselves, producing polyglot programs and quine relays are also
time-worn coding challenges. Challenges like these are usually solved by hand. Other stipulations are sometimes
added in such contests for extra complexity, e.g., “the shortest such program that ... ” or “the longest cycle of such
programs that ...” Margenstern and Rogozhin [20], for instance, describe significantly shrinking self-describing
Turing machines.
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Multi-quine synthesis would be an interesting challenge for the future. A “multi-quine” is a set of programs
that print their own source code, except that on particular, given inputs, they instead produce another program in
the set. Madore describes virology applications for these results, and even demonstrates an impressive encrypted
multi-quine proof-of-concept for this behavior. These would require at least some portions of Byrd et al’s more
powerful interpreters, as by definition multi-quines requires variable-arity functions. Presumably this would
also necessitate their techniques for taming the explosion of the search space. Along these same lines we suggest
self-analyzing or self-describing programs as other synthesis targets. These programs are not necessarily self-
referential, since, of course, there are many other programs that begin with the same character, have the same
length, or what have you. Nor are they strictly speaking quines, since many varieties of these problems require
input. They too might suggest other future applications.

The answers we synthesized are simple compared with record-holding solutions. The codegolf community is
a repository for such challenges and impressive solutions. Endoh [11] constructed a 128-language quine relay.
Also impressive are long-lasting group efforts producing 280+-language polyglot programs.? The authors do
not anticipate dethroning these records with our techniques anytime soon. We remind the reader, however,
that these records are not mechanically synthesized in seconds or minutes, but instead laboriously hand-crafted;
in the latter case constructed communally by scores over years. Bratley and Millo [6] in 1972 anticipate the
enduring fascination for such exercises, explaining

there is something about this particular problem which excites keen programmers, so that
research in self-reproducing program design is now under way for practically every compiler
on our system.

We too could not resist the temptation to play.

2See the current record and discussion at codegolf.stackexchange.com/questions/102370.
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9 « Hemann and Friedman

(define-relation
(plop acc whole res data)
(conde
((fresh
(s)
(== data "(,s))
(== acc "(,s))

(conde
((fresh
(a d)
(== s " (,a unquote d))
(=/=d '())
(fresh (m) (== res "(,m)) (plop s whole m s))))
((== 'q s) (== res "(q ',whole))))))
((fresh
(a d)
(=/=d '())
== '(,a unquote d) data)
(fresh
(p)

(== res " (,a unquote p))
(fresh (q) (== acc '(,a unquote q)) (plop g whole p d)))))))
(run*
(a)
(fresh
(x)
(plop
X
X
q
'((define-relation
(plop acc whole res data)
(conde
((fresh
(s)
(== data "(,s))
(== acc "(,s))

(conde

((fresh
(a d)
(== s " (,a unquote d))
(=/=4d '())

(fresh (m) (== res “(,m)) (plop s whole m s))))
((== 'q s) (==res "(q ',whole))))))

((fresh
(a d)
(=/=4d "())
== "(,a unquote d) data)
(fresh
(p)

(== res "(,a unquote p))
(fresh (q) (== acc "(,a unquote q)) (plop g whole p d)))))))
(run* (q) (fresh (x) (plop x x q)))))))
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