
Certified Semantics for Disequality∗

DMITRY ROZPLOKHAS, Higher School of Economics, JetBrains Research, Russia
DMITRY BOULYTCHEV, Saint Petersburg State University, JetBrains Research, Russia

We present an extension of our prior work on certified semantics for core miniKanren, introducing disequality constraints
in the language. Semantics is parameterized by an exact definition of constraint stores, allowing us to cover different
implementations, and we provide a list of sufficient conditions on this definition for search completeness. We also give two
examples of concrete implementations of constraint stores that satisfy those sufficient conditions. The description and proofs
for parameterized semantics and both implementations are certified in Coq and two correct-by-construction interpreters are
extracted.

1 INTRODUCTION
In its initial form [Friedman et al. 2005; Hemann and Friedman 2013] miniKanren introduces a single form of

constraint — unification of terms. While from a theoretical standpoint unification together with other primitive
constructs (conjunction, disjunction, and fresh variable introduction) form a Turing-complete basis, in practice of
relational programming a number of extensions are often used to make specifications more expressive, concise or
efficient. One of the most important extensions is disequality constraint.
A generic concept of domain-specific constraints in logic programming is studied in details in [Jaffar et al.

1998]; more specifically, disequality constraint [Comon-Lundh 1991] introduces one additional type of base goal —
a disequality of two terms

t1 . t2

The informal semantics of disequality constraint is complementary to that of unification: it puts certain
restrictions on free variables in the terms which prevent them from turning into syntactically equal. Similarly to
unification, whose evaluation results in a substitution, which is then threaded through the rest of computations,
the effect of disequality constraint is recorded in a constraint store which is later used to check the violation of
disequalities [Alvis et al. 2011].

We present an extension of our prior work on certified semantics for core miniKanren [Rozplokhas et al. 2019].
In that work, we defined denotational and operational semantics and proved the soundness and completeness
of the latter w.r.t. the former. The main advantage of the operational semantics introduced there over the ones
developed before [Kumar 2010; Lozov et al. 2017; Rozplokhas and Boulytchev 2018] was its ability to capture
the conventional for miniKanren interleaving search [Kiselyov et al. 2005] procedure. This allowed us to give
the first to our knowledge formal proof of completeness of the interleaving search as the capability to reach all
the solutions from denotational semantics (proof of completeness as the fairness of steams interleaving for a
∗The reported study was funded by RFBR, project number 18-01-00380

Authors’ addresses: Dmitry Rozplokhas, Higher School of Economics, JetBrains Research, Russia, rozplokhas@gmail.com; Dmitry Boulytchev,
Saint Petersburg State University, JetBrains Research, Russia, dboulytchev@math.spbu.ru.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

© 2020 Copyright held by the author(s).
miniKanren.org/workshop/2021/8-ART6

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

6 • Dmitry Rozplokhas and Dmitry Boulytchev

specific implementation was given in [Hemann et al. 2016]). The development was formally certified in Coq
proof assistant [Bertot and Castéran 2004], and a correct-by-construction interpreter was extracted.
To some extent our work follows the conventional roadmap of adding constraints to a pure logic/relational

language [Jaffar et al. 1998]; the difference is that, first, we use a specific constraint and a concrete solver, and
second, we prove all the results with regard to conventional for miniKanren interleaving search (versus a very
generic and abstract breadth-first search in [Jaffar et al. 1998]).
The contribution of our current work is as follows:

• we extend our denotational semantics to handle disequality constraints;
• we introduce a new abstraction layer (a constraint store with a number of abstract operations) in our
operational semantics;
• we formulate a set of sufficient conditions for completeness, expressed as algebraic properties of constraint
store and abstract operators, and prove the soundness and completeness of the extended operational
semantics w.r.t. the denotational one;
• we present two concrete implementations of constraint store and abstract operators and show that they
satisfy the sufficient conditions; thus, the soundness and completeness of the implementation with dis-
equality constraints follow immediately, and correct-by-construction interpreter for miniKanren with
disequality constraints can be extracted
• we demonstrate how our framework can be used to prove some properties of implementations of disequality
constraints.

The paper is organized as follows. In Section 2 we recall our framework from the previous paper [Rozplokhas
et al. 2019], which is extended in this work. The following sections describe the new results. Section 3 contains the
description of the extensions in semantics and sufficient conditions on abstract definitions for search completeness.
Section 4 contains two examples of implementations of constraint stores that satisfy the sufficient conditions for
completeness. Section 5 presents some applications of the extended semantics. The final section concludes.

2 THE SYNTAX AND SEMANTICS OF THE CORE LANGUAGE
In this section, we recall existing definitions of the syntax and the two semantics for the core language without

disequality constraints and the main result — the equivalence of these two semantics [Rozplokhas et al. 2019].

2.1 The Syntax of Core Language
The syntax of the language is shown in Fig. 1. First, we fix a set of constructors C with known arities and

consider a set of terms TX with constructors as functional symbols and variables from X . We parameterize this
set with an alphabet of variables since in the semantic description we will need two kinds of variables. The first
kind, syntactic variables, is denoted by X. We also consider an alphabet of relational symbols R which are used to
name relational definitions. The central syntactic category in the language is a goal. In our case, there are five
types of goals: equality of terms, conjunction and disjunction of goals, fresh variable introduction, and invocation
of some relational definition. Thus, equality is used as a constraint, and multiple constraints can be combined
using conjunction, disjunction, and recursion. For the sake of brevity we abbreviate immediately nested “fresh”
constructs into the one, writing “fresh x y д” instead of “fresh x . fresh y д”. The final syntactic
category is specification S. It consists of a set of relational definitions and a top-level goal. A top-level goal
represents a search procedure which returns a stream of substitutions for the free variables of the goal. The
language we defined is first-order, as goals can not be passed as parameters, returned or constructed at runtime.
As an example consider the specification for the standard appendo relation and a query which splits a list

containing three constants A, B and C into two parts in every possible way:

Certified Semantics for Disequality • 6

C = {Cki
i } constructors with arities

TX = X ∪ {Cki
i (t1, . . . , tki) | tj ∈ TX } terms over the set of variables X

D = T∅ ground terms
X = {x ,y, z, . . . } syntactic variables
A = {α , β ,γ , . . . } semantic variables
R = {Rkii } relational symbols with arities

G = TX ≡ TX equality
G ∧ G conjunction
G ∨ G disjunction
fresh X . G fresh variable introduction
Rkii (t1, . . . , tki), tj ∈ TX relational symbol invocation

S = {Rkii = λ x i1 . . . x
i
ki
.дi ; } д specification

Fig. 1. The syntax of core language

appendo = λ x y xy .
((x ≡ Nil) ∧ (xy ≡ y)) ∨
(fresh h t ty .

(x ≡ Cons (h , t)) ∧

(xy ≡ Cons (h , ty)) ∧
(appendo t y ty)

) ;
appendo x y (Cons (A , Cons (B , Cons (C , Nil))))

2.2 Denotational sematics
For denotational semantics, we use a simple set-theoretic approach which can be considered analogous to the

least Herbrand model for definite logic programs [Lloyd 1984].
Intuitively, the mathematical model for every goal should be a relation between semantic variables that occur

free in this goal. We represent this relation as a set of total functions

f : A 7→ D
from semantic variables to ground terms. We call these functions representing functions.
Then, the semantic function for goals is parameterized over environments which prescribe semantic functions

to relational symbols:

Γ : R → (TA∗ → 2A→D)
An environment associates with relational symbol a function that takes a string of terms (the arguments of the

relation) and returns a set of representing functions. The signature for semantic brackets for goals is as follows:

J•KΓ : G → 2A→D

It maps a goal into the set of representing functions w.r.t. an environment Γ.

6 • Dmitry Rozplokhas and Dmitry Boulytchev

Jt1 ≡ t2KΓ = {f : A → D | f (t1) = f (t2)} [UnifyD]
Jд1 ∧ д2KΓ = Jд1KΓ ∩ Jд1KΓ [ConjD]
Jд1 ∨ д2KΓ = Jд1KΓ ∪ Jд1KΓ [DisjD]

Jfresh x .дKΓ = (Jд [α/x]KΓ) ↑ α , α < FV (д) [FreshD]
JR (t1, . . . , tk)KΓ = (Γ R) t1 . . . tk [InvokeD]

Fig. 2. Denotational semantics of goals

We formulate the following important completeness condition for the semantics of a goal д: for any goal д and
two representing functions f and f′, such that f |FV (д) = f′ |FV (д)

f ∈ JдK⇔ f′ ∈ JдK

In other words, representing functions for a goal д restrict only the values of free variables of д and do not
introduce any “hidden” correlations. This condition guarantees that our semantics is complete in the sense that it
does not introduce artificial restrictions for the relation it defines. We proved that the semantics of goals always
satisfy this condition.
To define the semantic function we need a few operations for representing functions:
• A homomorphic extension of a representing function

f : TA → D
which maps terms to terms:

f (α) = f (α)

f (Cki
i (t1,tki)) = Cki

i (f (t1), . . . f (tki))

• A pointwise modification of a function

f [x ← v] (z) =

{
f (z) , z , x

v , z = x

• A generalization operation:

f ↑ α = {f [α ← d] | d ∈ D}

Informally, this operation generalizes a representing function into a set of representing functions in such a
way that the values of these functions for a given variable cover the wholeD. We extend the generalization
operation for sets of representing functions F ⊆ A → D:

F ↑ α =
⋃
f∈F

(f ↑ α)

The semantics for goals is shown on Fig. 2.
The final component is the semantics of specifications. Given a specification

{Ri = λ x i1 . . . x
i
ki
.дi ; }ni=1 д

we construct a correct environment Γ0 and then take the semantics of the top-level goal:

J{Ri = λ x i1 . . . x
i
ki
.дi ; }ni=1 дK = JдKΓ0

Certified Semantics for Disequality • 6

As the set of definitions can be mutually recursive we apply the fixed point approach and define Γ0 as the least
fixed point of a specific function F that takes an environment Γ and returns new environment in which semantics
of a body of each definition is evaluated with environment Γ.

2.3 Operational sematics
The operational semantics of miniKanren, which we described, corresponds to the known implementations

with interleaving search. The semantics is given in the form of a labeled transition system (LTS) [Keller 1976].
The states in the transition system have the following shape:

S = G × Σ × N | S ⊕ S | S ⊗ G

A state has a tree-like structure with intermediate nodes corresponding to partially-evaluated conjunctions
(“⊗”) or disjunctions (“⊕”). A leaf in the form ⟨д,σ ,n⟩ determines a goal in a context, where д — a goal, σ — a
substitution accumulated so far, and n — a natural number, which corresponds to a number of semantic variables
used to this point. For a conjunction node, its right child is always a goal since it cannot be evaluated unless
some result is provided by the left conjunct.
We also need extended states

S = ⋄ | S

where ⋄ symbolizes the end of the evaluation.
The set of labels is defined as follows:

L = ◦ | Σ × N

The label “◦” is used to mark those steps which do not provide an answer; otherwise, a transition is labeled
by a pair of a substitution and a number of allocated variables. The substitution is one of the answers, and the
number is threaded through the derivation to keep track of the allocated variables.
The transition rules are shown in Fig. 3. The introduced transition system is completely deterministic.
A derivation sequence for a certain state s determines a trace Trs — a finite or infinite sequence of answers.

The trace corresponds to the stream of answers in the reference miniKanren implementations.

2.4 Semantics Equivalence
After we defined two different kinds of semantics for miniKanren we related them and showed that the results

given by these two semantics are the same for any specification. By proving this equivalence we established the
completeness of the search which means that the search will get all answers satisfying the described specification
and only those.

To do it we had to relate the answers produced by these two semantics as they have different forms: a trace of
substitutions (along with numbers of allocated variables) for operational and a set of representing functions for
denotational. There is a natural way to extend any substitution to a representing function: composing it with an
arbitrary representing function will preserve all variable dependencies in the substitution. So we defined a set of
representing functions corresponding to substitution as follows:

JσK = {f ◦ σ | f : A 7→ D}
And denotational analog of an operational semantics (a set of representing functions corresponding to answers

in the trace) for given extended state s is then defined as a union of sets for all substitution in the trace:

JsKop = ∪(σ ,n)∈Trs JσK

6 • Dmitry Rozplokhas and Dmitry Boulytchev

⟨t1 ≡ t2,σ ,n⟩
◦
−→ ^, ∄mдu (t1σ , t2σ) [UnifyFail]

⟨t1 ≡ t2,σ ,n⟩
(mдu (t1σ ,t2σ)◦σ), n)
−−−−−−−−−−−−−−−−−→ ^ [UnifySuccess]

⟨д1 ∨ д2,σ ,n⟩
◦
−→ ⟨д1,σ ,n⟩ ⊕ ⟨д2,σ ,n⟩ [Disj]

⟨д1 ∧ д2,σ ,n⟩
◦
−→ ⟨д1,σ ,n⟩ ⊗ д2 [Conj]

⟨fresh x .д,σ ,n⟩
◦
−→ ⟨д [αn+1 /x],σ ,n + 1⟩ [Fresh]

Rkii = λ x1 . . . xki .д〈
Rkii (t1, . . . , tki),σ ,n

〉
◦
−→

〈
д [t1

/
x1 . . .

tki
/
xki],σ ,n

〉 [Invoke]

s1
◦
−→ ^

(s1 ⊕ s2)
◦
−→ s2

[DisjStop]

s1
r
−→ ^

(s1 ⊕ s2)
r
−→ s2

[DisjStopAns]

s
◦
−→ ^

(s ⊗ д)
◦
−→ ^

[ConjStop]

s
(σ ,n)
−−−−→ ^

(s ⊗ д)
◦
−→ ⟨д,σ ,n⟩

[ConjStopAns]

s1
◦
−→ s ′1

(s1 ⊕ s2)
◦
−→ (s2 ⊕ s ′1)

[DisjStep]

s1
r
−→ s ′1

(s1 ⊕ s2)
r
−→ (s2 ⊕ s ′1)

[DisjStepAns]

s
◦
−→ s ′

(s ⊗ д)
◦
−→ (s ′ ⊗ д)

[ConjStep]

s
(σ ,n)
−−−−→ s ′

(s ⊗ д)
◦
−→ (⟨д,σ ,n⟩ ⊕ (s ′ ⊗ д))

[ConjStepAns]

Fig. 3. Operational semantics of interleaving search

This allowed us to state the theorem relating two semantics.

Theorem 1 (Operational semantics soundness and completeness). For any specification {. . . } д, for which
the indices of all free variables in д are limited by some number n

J⟨д, ϵ,n⟩Kop =n J{. . . } дK.

Where ‘=n ’ means that we compare representing functions of these sets only on the semantic variables from
{α1, . . . ,αn}:

S1 =n S2
def
⇐⇒ {f |{α1, ...,αn } | f ∈ S1} = {f |{α1, ...,αn } | f ∈ S2}.

Certified Semantics for Disequality • 6

We can not use the usual equality of sets instead of this one, the sets from the theorem statement are actually
not equal. The reason for this is that denotational semantics encodes only dependencies between the free
variables of a goal, which is reflected by the completeness condition, while operational semantics may also
contain dependencies between semantic variables allocated in “fresh”. Therefore we have to restrict representing
functions on the semantic variables allocated in the beginning (which includes all free variables of a goal). This
does not compromise our promise to prove the completeness of the search as miniKanren provides the result as
substitutions only for queried variables, which are allocated in the beginning.
The proof of this main theorem was certified in Coq.

3 EXTENSION WITH DISEQUALITY CONSTRAINTS
In this section, we present extensions of our two semantics for the language with disequality constraints and

revised versions of the soundness and completeness theorems.
Disequality constraint introduces one additional type of base goal — a disequality of two terms: t1 . t2
The extension of denotational semantics is straightforward (as disequality constraint is complementary to

equality):

Jt1 . t2K = {f ∈ R | f (t1) , f (t2)},

This definition for a new type of goals fits nicely into the general inductive definition of denotational semantics
of an arbitrary goal and preserves its properties, such as completeness condition.

In the operational case we deviate from describing one specific search implementation since there are several
distinct ways to embed disequality constraints in the language and we would like to be able to give semantics
(and subsequently prove correctness) for all of them. Therefore we base the extended operational semantics on a
number of abstract definitions concerning constraint stores for which different concrete implementations may be
substituted.

We assume that we are given a set of constraint store objects, which we denote by Ωσ (indexing every constraint
store with some substitution σ and assuming the store and the substitution are consistent with each other), and
three following operations:

(1) Initial constraint store Ωinit
ϵ (where ϵ is empty substitution), which does not contain any constraints yet.

(2) Adding a disequality constraint to a store add (Ωσ , t1 . t2), which may result in a new constraint store Ω′σ
or a failure ⊥, if the new constraint store is inconsistent with the substitution σ .

(3) Updating a substitution in a constraint store update (Ωσ ,δ) to intergate a new substitution δ into the
current one, which may result in a new constraint store Ω′σδ or a failure ⊥, if the constraint store is
inconsistent with the new substitution.

The change in operational semantics for the language with disequality constraints is now straightforward: we
add a constraint store to a basic (leaf) state ⟨д,σ ,Ωσ ,n⟩, as well as in the label form (σ ,Ωσ ,n), and this store is
simply threaded through all the rules, except those for equality. We change the rules for equality using update
operation and add the rules for disequality constraint using add. In both cases, the search in the current branch
is pruned if these primitives return ⊥.

6 • Dmitry Rozplokhas and Dmitry Boulytchev

⟨t1 ≡ t2,σ ,Ωσ ,n⟩
◦
−→ ^, ∄mдu (t1, t2,σ) [UnifyFailMGU]

⟨t1 ≡ t2,σ ,Ωσ ,n⟩
◦
−→ ^, mдu (t1, t2,σ) = δ , update (Ωσ ,δ) = ⊥ [UnifyFailUpdate]

⟨t1 ≡ t2,σ ,Ωσ ,n⟩
(σδ, Ω′σδ , n)
−−−−−−−−−−→ ^, mдu (t1, t2,σ) = δ , update (Ωσ ,δ) = Ω′σδ [UnifySuccess]

⟨t1 . t2,σ ,Ωσ ,n⟩
◦
−→ ^, add (Ωσ , t1 . t2) = ⊥ [DiseqFail]

⟨t1 . t2,σ ,Ωσ ,n⟩
(σ , Ω′σ , n)
−−−−−−−−→ ^, add (Ωσ , t1 . t2) = Ω′σ [DiseqSucess]

The initial state naturally contains an initial constraint store
〈
д, ε,Ωinit

ϵ ,n
〉
.

To state the soundness and completeness result now we need to revise our definition of the denotational analog
of an answer (σ ,Ωσ ,n) since we have to take into account the restrictions which a constraint store Ωσ encodes.
To do this we need one more abstract definition — a denotational interpretation of a constraint store JΩσ K as a
set of representing functions. We prove the soundness and completeness w.r.t. this interpretation and expect it to
adequately reflect how the restrictions of constraint stores in the answers are presented. The denotational analog
of operational semantics for an arbitrary extended state is then redefined as follows.

JsKop = ∪(σ ,Ωσ ,n)∈Trs JσK ∩ JΩσ K
The statement of the soundness and completeness theorem stays the samewith regard to this updated definitions

of semantics and denotational analog.

Theorem 2 (Operational semantics soundness and completeness for extended language). For any
specification {. . . } д, for which the indices of all free variables in д are limited by some number n

J
〈
д, ϵ,Ωinit

ϵ ,n
〉
Kop =n J{. . . } дK.

To be able to prove it we, of course, need certain requirements for the given operations on constraint stores.
We came up with the following list of sufficient conditions for soundness and completeness.

(1) JΩinit
ϵ K = {f : A 7→ D};

(2) add (Ωσ , t1 . t2) = Ω′σ =⇒ JΩσ K ∩ Jt1 . t2K ∩ JσK = JΩ′σ K ∩ JσK;
(3) add (Ωσ , t1 . t2) = ⊥ =⇒ JΩσ K ∩ Jt1 . t2K ∩ JσK = ∅;
(4) update (Ωσ ,δ) = Ω′σδ =⇒ JΩσ K ∩ JσδK = JΩ′σδ K ∩ JσδK;
(5) update (Ωσ ,δ) = ⊥ =⇒ JΩσ K ∩ JσδK = ∅.
These conditions state that given denotational interpretation and given operations on constraint stores are

adequate to each other.
Condition 1 states that interpretation of the initial constraint store is the whole domain of representing function

since it does not impose any restrictions.
Condition 2 states that when we add a constraint to a store Ωσ the interpretation of the result contains exactly

those functions which simultaneously belong to the interpretation of the store Ωσ and satisfy the constraint if
we consider only extensions of the substitution σ .

Condition 3 states that addition could fail only if no such functions exist.
Conditions 4 state that the result of updating a store with an additional substitution should have the same

interpretation if we consider only extensions of the updated substitution.
Condition 5 states that update could fail only if no such functions exist.

Certified Semantics for Disequality • 6

The conditions 2-5 describe exactly what we need to prove the soundness and completeness for base goals
(equality and disequality); at the same time, since these conditions have relatively simple intuitive meaning in
terms of these two operations they are expected to hold naturally in all reasonable implementations of constraint
stores.
We can prove that this is enough for soundness and completeness to hold for an arbitrary goal. However,

contrary to our expectations, the existing proof can not be just reused for all non-basic types of goals and has
to be modified significantly in the case of fresh . Specifically, we need one additional condition on constraint
store in state (σ ,n,Ωσ): only the values on the first n fresh variables determine whether a representing function
belongs to the denotational semantics JσK ∩ JΩσ K of the state (note the similarity to the completeness condition).
Luckily, we can infer this property for all states that can be constructed by our operational semantics from the
sufficient conditions above.
Thus for an arbitrary implementation, we need to give a formal definition of constraint store object and its

denotational interpretation, provide three operations for it and prove five conditions on them, and by this, we
ensure that for arbitrary specification the interpretations of all solutions found by the search in this version of
MiniKanren will cover exactly the mathematical model of this specification.
As well as our previous development this extension is certified in Coq1. We describe operational semantics

and its soundness and completeness as modules parametrized by the definitions of constraint stores and proofs
of the sufficient conditions for them.

4 CONCRETE IMPLEMENTATIONS
In this section, we define two concrete implementations of constraint stores which can be incorporated in

operational semantics: the trivial one and the one, which is close to existing real implementation in a certain
version of miniKanren [Alvis et al. 2011]. We prove that they satisfy the sufficient conditions for search
completeness from the previous section. Both implementations are certified in Coq, which allowed us to extract
two correct-by-construction interpreters for miniKanren with disequality constraints.

4.1 Trivial Implementation
This trivial implementation simply stores all pairs of terms, which the search encounters, in a multiset and

never uses them:

Ωσ ⊂m T × T

Ωinit
ϵ = ∅

add (Ωσ , t1 . t2) = Ωσ ∪ {(t1, t2)}

update (Ωσ ,δ) = Ωσ

The interpretation of such constraint store is the set of all representing functions that does not equate terms in
any pair:

JΩσ K = {f : A 7→ D | ∀(t1, t2) ∈ Ωσ , f (t1) , f (t2)}

This is a correct implementation (although for the full implementation we should find a way to present
restrictions stored this way in answers adequately) and it satisfies the sufficient conditions for completeness
1https://github.com/dboulytchev/miniKanren-coq/tree/disequality

https://github.com/dboulytchev/miniKanren-coq/tree/disequality

6 • Dmitry Rozplokhas and Dmitry Boulytchev

trivially, but it is not very practical. In particular, it does not use information acquired from disequalities to halt
the search in case of contradiction and it can return contradictory answers with the final disequality constraint
violated by the final substitution (such as ([α0 7→ 5], [α0 , 5], 1)): since such answers have empty interpretations,
their presence does not affect search completeness.

4.2 ReaIistic Implementation
This implementation is more similar to those in existing miniKanren implementations and takes an approach

that is close to one described is [Alvis et al. 2011].
In this version, every constraint is represented as a substitution containing variable bindings which should not

be satisfied.

Ωσ ⊂m Σ

So if a constraint store Ωσ contains a substitution ω the set of representing functions prohibited by it is JσωK,
which provides the following denotational interpretation for a constraint store:

JΩσ K =
⋂

ω ∈Ωσ

JσωK

We start with an empty store

Ωinit
ϵ = ∅

When we encounter a disequality for two terms we try to unify them and update constraint store depending
on the result of unification:

add (Ωσ , t1 . t2) =

Ωσ ∄mдu(t1σ , t2σ)

⊥ mдu(t1σ , t2σ) = ϵ

Ωσ ∪ {ω} mдu(t1σ , t2σ) = ω , ϵ

If the terms are not unifiable, there is no need to change the constraint store. If they are unified by current
substitution the constraint is already violated and we signal a failure. Otherwise, the most general unifier is an
appropriate representation of this constraint.

When updating a constraint store with an additional substitution δ we try to update each individual constraint
substitution by treating it as a list of pairs of terms that should not be unified (the first element of each pair is a
variable), applying δ to these terms and trying to unify all pairs simultaniously:

updateconstr ([x1 7→ t1, . . . ,xk 7→ tk],δ) =mдu([δ (x1), . . . ,δ (xk)], [t1δ , . . . , tkδ])

We construct the updated constraint store from the results of all constraint updates:

update (Ωσ ,δ) =

{
⊥ ∃ω ∈ Ωσ : updateconstr (ω,δ) = ϵ

{ω ′ | updateconstr (ω,δ) = ω ′ , ⊥, ω ∈ Ωσ } otherwise

If any constraint is violated by the additional substitution we signal a failure, otherwise we take in the store
the updated constraints (and some constraints are thrown away as they can no longer be violated).
We proved the sufficient conditions for completeness for this implementation, too, but it required us to

prove first that all substitutions constructed by miniKanren search have a specific form. Namely, a current
subsitution σ at any point of the search (started from the initial state) is always narrowing — which means

Certified Semantics for Disequality • 6

thatVRan (σ) ∩ Dom (σ) = ∅ — and every time a current substitution σ is updated by composing with some
substitution δ (in rule [UnifySuccess]) this substitution is extending — which means that Dom (δ) ∩ Dom (σ) =
∅ ∧VRan (δ) ∩ Dom (σ) = ∅.

5 APPLICATIONS
In addition to verification of correctness of different implementations of disequality constraints we can use our

framework to formally state and prove some of its other important properties. Thanks to our completeness result,
we can do it in the denotational context, where the reasoning is much easier.

For example, we can specify contradictory answers with empty interpretation, which we pointed out for the
trivial implementation from the previous section, and prove that there are no such answers in the realistic imple-
mentation if and only if there are infinitely many constructors in the language. So, for the realistic implementation
the following holds iff the set of constructors is infinite:

Lemma 1. For any goal д, if all free variables in it belong to the set {α1, . . . ,αn}, then

∀(σ ,Ωσ ,nr) ∈ Tr⟨д,ϵ,Ωinit
ϵ ,n⟩ , JσK ∩ JΩσ K , ∅.

The proof is based on the following lemma about combining constraints, which we can prove we can prove
when there are infinitely many constructors (and otherwise it is not true).

Lemma 2. If for a finite constraint store Ωσ

∀ω ∈ Ωσ , JσK ∩ JωK , ∅,
then

JσK ∩ JΩσ K , ∅.

Another example of application is the justification of optimizations in constraint store implementation. For
example, the following obvious (in denotational context) statement allows deleting subsumed constraints in the
realistic implementation.

Lemma 3. For any constraint store Ωσ and two constraint substitutions ω and ω ′, if

∃τ ,ω ′ = ωτ

then

JΩσ ∪ {ω,ω
′}K = JΩσ ∪ {ω}K.

6 CONCLUSION
In this paper we presented an extended version of formal semantics for miniKanrenwhich supports disequality

constraints. The semantics is parametrized by an exact implementation of constraint stores and allows us to
ensure the correctness of different implementations in a unified way, using the given set of sufficient conditions.

REFERENCES
Claire E. Alvis, Jeremiah J. Willcock, Kyle M. Carter, William E. Byrd, and Daniel P. Friedman. 2011. cKanren: miniKanren with Constraints.

In Proceedings of the 2011 Annual Workshop on Scheme and Functional Programming.
Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and Program Development - Coq’Art: The Calculus of Inductive Constructions.

Springer. https://doi.org/10.1007/978-3-662-07964-5
Hubert Comon-Lundh. 1991. Disunification: A Survey. In Computational Logic - Essays in Honor of Alan Robinson.
Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov. 2005. The reasoned schemer. MIT Press.

https://doi.org/10.1007/978-3-662-07964-5

6 • Dmitry Rozplokhas and Dmitry Boulytchev

Jason Hemann and Daniel P. Friedman. 2013. µKanren: A Minimal Functional Core for Relational Programming. In Proceedings of the 2013
Annual Workshop on Scheme and Functional Programming.

Jason Hemann, Daniel P. Friedman, William E. Byrd, and Matthew Might. 2016. A small embedding of logic programming with a simple
complete search. In Proceedings of the 12th Symposium on Dynamic Languages, DLS 2016, Amsterdam, The Netherlands, November 1, 2016.
96–107. https://doi.org/10.1145/2989225.2989230

Joxan Jaffar, Michael Maher, Kim Marriott, and Peter Stuckey. 1998. The semantics of constraint logic programs. The Journal of Logic
Programming 37, 1 (1998), 1 – 46. https://doi.org/10.1016/S0743-1066(98)10002-X

Robert M. Keller. 1976. Formal Verification of Parallel Programs. Commun. ACM 19, 7 (1976), 371–384. https://doi.org/10.1145/360248.360251
Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman, and Amr Sabry. 2005. Backtracking, interleaving, and terminating monad transformers:

(functional pearl). (2005), 192–203. https://doi.org/10.1145/1086365.1086390
Ramana Kumar. 2010. Mechanising Aspects of miniKanren in HOL. Bachelor Thesis, The Australian National University.
John W. Lloyd. 1984. Foundations of Logic Programming, 1st Edition. Springer.
Petr Lozov, Andrei Vyatkin, and Dmitry Boulytchev. 2017. Typed Relational Conversion. In Trends in Functional Programming - 18th Interna-

tional Symposium, TFP 2017, Canterbury, UK, June 19-21, 2017, Revised Selected Papers. 39–58. https://doi.org/10.1007/978-3-319-89719-6_3
Dmitri Rozplokhas and Dmitri Boulytchev. 2018. Improving Refutational Completeness of Relational Search via Divergence Test. In Proceedings

of the 20th International Symposium on Principles and Practice of Declarative Programming, PPDP 2018, Frankfurt am Main, Germany,
September 03-05, 2018. 18:1–18:13. https://doi.org/10.1145/3236950.3236958

Dmitry Rozplokhas, Andrey Vyatkin, and Dmitry Boulytchev. 2019. Certified Semantics for miniKanren. In miniKanren and Relational
Programming Workshop.

https://doi.org/10.1145/2989225.2989230
https://doi.org/10.1016/S0743-1066(98)10002-X
https://doi.org/10.1145/360248.360251
https://doi.org/10.1145/1086365.1086390
https://doi.org/10.1007/978-3-319-89719-6_3
https://doi.org/10.1145/3236950.3236958

	Abstract
	1 Introduction
	2 The syntax and semantics of the core language
	2.1 The Syntax of Core Language
	2.2 Denotational sematics
	2.3 Operational sematics
	2.4 Semantics Equivalence

	3 Extension with disequality constraints
	4 Concrete Implementations
	4.1 Trivial Implementation
	4.2 ReaIistic Implementation

	5 Applications
	6 Conclusion
	References

