
Higher-order Logic Programming with λKanren

WEIXI MA, KUANG-CHEN LU, and DANIEL P. FRIEDMAN, Indiana University, USA

We present λKanren, a new member of the Kanren family [2] that is inspired by λProlog [5]. With a shallow embedding
implementation, the term language of λKanren is represented by the functions and macros of its host language. As a
higher-order logic programming language, λKanren is extended with a subset of higher-order hereditary Harrop formulas [7].

1 INTRODUCTION
λKanren introduces four new operators to µKanren [3]: tie, app, assume-rel, and all. The opertors tie and
app create binding structures. In addition, the ≡ operator recognizes αβ-conversions between binding structures.
The assume-rel and all operators enable more expressive reasoning with Hereditary Harrop formulas [6]. To
demonstrate λKanren’s increment to µKanren, we first review the two forms of logic, fohc and hohh, behind these
two languages.

µKanren implements First-order Horn clause (fohc) [1]. The grammar of Horn clause is shown in Fig 1. We
say µKanren is first-order, as its unification algorithm identifies only structural equivalence. As an example that
illustrates the correspondence between µKanren definitions and fohc formulas, consider the relation appendo .

(defrel (appendo xs ys zs)

(conde

[(≡ nil xs) (≡ ys zs)]

[(fresh (a d r)

(≡ `(,a . ,d) xs)

(appendo d ys r)

(≡ `(,a . ,r) zs))]))

D formulas of fohc. In µKanren, a defrel introduces a D formula. For example, the appendo definition corre-
sponds to this D formula,

∀xs ∀ys ∀zs (≡ xs nil) ∧ (≡ ys zs)

∨ ∃a ∃d ∃ r (≡ xs ‘(,a.,d)) ∧ (appendo d ys r) ∧ (≡ ‘(,a., r) zs)
⊃ (appendo xs ys zs).

Here appendo and ≡ both build atomic formulas. For example, (appendo xs ys zs) and (≡ xs nil) are atomic
formulas.

Authors’ address: Weixi Ma, mvc@iu.edu; Kuang-chen Lu, kl13@iu.edu; Daniel P. Friedman, dfried00@gmail.com, Indiana University, USA.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

© 2020 Copyright held by the author(s).
miniKanren.org/workshop/2021/8-ART1

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

1 • Weixi Ma, Kuang-chen Lu, and Daniel P. Friedman

Goals G ::= A |G ∧G |G ∨G | ∃x G
Definitions D ::= A |G ⊃ D |D ∧ D | ∀x D

Atomic Formulas A

Fig. 1. Horn Clause Formulas

Goals G ::= A |G ∧G |G ∨G | ∃x G |D ⊃ G | ∀x G
Definitions D ::= A |G ⊃ D |D ∧ D | ∀x D

Atomic Formulas A

Fig. 2. Hereditary Harrop Formulas

G formulas of fohc. In µKanren, a run query contains a G formula, e.g.,

(run 1

(fresh (xs)

(appendo xs `(1 2) `(1 2))))

is formulated as

∃xs (appendo xs ‘(1 2) ‘(1 2)).

Formulas of hohh. λProlog implements a more expressive logic, higher-order hereditary Harrop formulas
(hohh) [6]. Shown in Figure 2, Hereditary Harrop formulas extend G formulas with implicational goals and forall-
quantification. Also, with higher-order unification, the unification algorithm of λProlog identifies αβ-equivalence
between binding structures (that are absent in µKanren).

This paper presents λKanren. λKanren implements implicational goals and forall-quantification with two new
operators, assume-rel and all, respectively. Also, λKanren incorporates higher-order pattern unification [4] for
the binding structures (that are created by another two new operators, tie and app).
The rest of this paper demonstrates the uses of these four operators and their implementation details when

appropriate. Our implementation of λKanren is available at https://github.com/mvcccccc/MK2020.

2 HIGHER-ORDER UNIFICATION
This section shows the power of higher-order pattern unification. By adapting Miller [4]’s unification algorithm,
λKanren is equipped with two new operators: tie and app. tie expressions are abstractions and app is the
shorthand for application. The ≡ operator in λKanren identifies αβ-equivalence between terms that involve tie
and app.
Consider the following example that demonstrates α-equivalence. This example, metaphorically, tests the

equivalence between (λ (a b) (a b)) and (λ (x y) (x y)).

> (run 1 q

(== (tie (a b) (app a b))

(tie (x y) (app x y))))

'(_0)

tie is implemented as the following macro. It takes a list of variable names and a term. It then creates a Tie
structure that is internally used for curried binders. Hereafter, we call a variable that is introduced by fresh a
unification variable and a variable that is introduced by tie a binding variable.

Higher-order Logic Programming with λKanren • 1

(define -syntax tie

(syntax -rules ()

[(_ () t) body]

[(_ (x0 x ...) body)

(let ([x0 (Var 'x0)])

(Tie x0 (tie (x ...) body)))]))

app is implemented as the following macro that elaborates a list of terms to an App structure that is internally
used for curried applications.

(define -syntax app

(syntax -rules ()

[(_ rator rand) (App rator rand)]

[(_ rator rand0 rand ...)

(app (App rator rand0) rand ...)]))

Next, consider the following example that queries for two instantiations of f. This example demonstrates (1)
β-conversions during unification and (2) how binding structures are reified.

> (run 2 f

(== (tie (a b) (app a b))

(tie (x y) (app f x y))))

'((tie (_0) (tie (_1) (app _0 _1))))

There is only one instantiation: f is a function (a Tie structure) of two inputs and f outputs an application
form (a App structure) that applies its first input on the second one.
The internal structures, Tie and App, are reified as tagged lists. These tagged lists reflect their corresponded

user interfaces, tie and app. During reification, binding variables and unification variables are both converted to
underscore-digit symbols.
The power of higher-order unification, however, comes in with limits. To ensure decidability, β-conversion

in Miller [4]’s algorithm restricts application forms: when the operator of an app is a unification variable, its
operands must be distinct binding variables, otherwise unification fails. For example, the following query has no
solution because the operands, the two bs, of the unification variable f are not distinct. In this case, with f being
a function of two input bs, we cannot decide which b takes control.

> (run 1 f

(== (tie (a) a)

(tie (b) (app f b b))))

'()

To enforce this restriction, Miller [4]’s algorithm imposes another restriction on variable scopes: the instantia-
tion of a unification variable may only contain its visible binding variables. A binding variable x is visible to a
unification variable q if the introduction of x lexically precedes that of q. Given the following example, it seems
that q can be instantiated by y. Unfortunately, y is not visible to q and the query has no solution.

> (run 1 q

(== (tie (a b) (app a b))

(tie (x y) (app x q))))

'()

1 • Weixi Ma, Kuang-chen Lu, and Daniel P. Friedman

In our implementation, the unifier extends higher-order pattern unification and adapts it for conventional
miniKanren programming style. In Miller [4]’s algorithm, a unification variable must be an operator of an
application form. The operands of the application must be distinct binding variables. That means, Miller [4]’s
algorithm reports unsovability when a unification variable is simply unified against a constant. (In fact, constants
are not in the term language of Miller [4]’s algorithm).

In miniKanren, we often unify a single unification variable and a constant. So, it is compelling that we extend
the term language and the unification variable, as we have done in our implementation.

3 IMPLICATIONAL GOALS
This section introduces the assume-rel operator that implements implicational goals (D ⊃ G). An assume-rel
operator takes two inputs: (1) the hypothesis in the form of a D formula and (2) the goal in the form of a G
formula. The assume-rel operator then uses the hypothesis as a fact and moves on to the goal.
Implementing assume-rel is subtle with shallow embedding. Because the definitions of λKanren are kept

in the run-time environment of its host language, extending these definitions requires updating the run-time
environment. This problem is illustrated in the following example, liberally adapted from Miller and Nadathur [5,
p. 80].

(defrel (taken name class)

(conde

[(== 'Josh name) (== 'B521 class)]

[(== 'Josh name) (== 'B522 class)]))

(defrel (pl-major name)

(taken name 'B521)

(taken name 'B523)

(taken name 'B522))

One may complete pl-major after taking three classes: B521, B522, and B523. And Josh currently has taken
B521 and B522. In the following query, the assume-rel operator extends the definition of taken with (taken
’Josh q) and then moves on to the goal (pl-major ’Josh).

> (run 1 q

(assume -rel [(taken name class)

(== 'Josh name)

(== 'q class)]

(pl-major 'Josh)))

'(B523)

From the implementation aspect, because the host language is lexically scoped, the definition of pl-major is
fixed. This means that, the free variable in the definition of pl-major, namely taken, always uses the original
definition of Josh taking B521 and B522. To extend definitions on the fly, we need to create dynamic scope so
that the free variables may use the latest, updated definitions.
Our approach is to add an extra layer between λKanren and the host language (Racket). This extra layer

redirects function definitions.
We introduce two global maps, name->idx and idx->def. Each defrel extends these two maps by creating a

new index, putting the name-idx pair and the idx-def pair in the two maps respectively. The idx->def map is
global. And the name->idx map is threaded through during the execution of a query (an invocation of a run).

Higher-order Logic Programming with λKanren • 1

To invoke a definition, one follows name->idx and idx->def, i.e., first retrieving the index using name->idx
and then getting the definition using idx->def. For example, the user interface

(pl-major ’Josh)
is macro-expanded to

((cdr (assv idx ->def (cdr (assv name ->idx 'pl-major))))

'Josh).

When an assume-rel operator is invoked, the two maps are extended again: (1) a new index is created; (2)
idx->def contains the pair of the new index and the extended function; and (3) name->idx now has a new pair
of the definition name and the new index, this new pair shadows the previous one.

In the previous example, let’s use t1 for the taken definition that knows Josh has taken B521 and B522, use t2
for the extended taken (where we assume-rel Josh has taken B523), and use p for the definition of pl-major.
With taken and pl-major first defined, name->idx is ((pl-major . 2) (taken . 1)) and idx->body
is ((2 . p) (1 . t1)). Then, after assuming (taken ’Josh q), the query (pl-major ’Josh) runs in an
updated environment where name->idx is ((taken . 3) (pl-major . 2) (taken . 1)) and idx->body is
((3 . t2) (2 . p) (1 . t1)). The more recent pair in name->idx shadows the previous one. And therefore,
when taken is invoked, we use t2.

Many interesting examples only make hypothesis on atomic formulas. And thus we provide the assume
operator that is a shorter version of the assume-rel operator. Instead of any D formula, the assume operator
only takes an atomic hypothesis.
As an example, we define the eq relation to be reflexive, transitive, and symmetric as follows.

(defrel (eq x y)

(conde

[(== x y)]

[(fresh (z)

(eq x z)

(eq z y))]

[(eq y x)]))

Obviously apple and orange are by no means eq. In fact, the following query does not terminate in a naive
µKanren implementation because the third conde line is very recursive.

> (run 1 q

(eq 'apple 'orange))

1 • Weixi Ma, Kuang-chen Lu, and Daniel P. Friedman

Using assume, we may temporarily extend the definition of eq as follows.
> (run 5 q

(assume (eq 'orange 'apple)

(assume (eq 'orange 'dog)

(eq 'orange q))))

'(dog apple orange orange dog)

Because λKanren runs backward, as in the following, the hypothesis can be inferred as well.
> (run 1 q

(assume (eq 'orange q)

(eq 'apple 'orange))))

'(apple)

4 FORALL-QUANTIFICATION
This section introduces the all operator (∀xG) that takes a list of symbols and a goal. These symbols are used to
create special variables that are virtually constants (eigenvariables).
Continuing with taken and pl-major, we create a random person x using the all operator.

> (run 1 q

(all (x)

(assume -rel (taken x 'B521)

(assume -rel (taken x 'B522)

(assume -rel (taken x 'B523)

(pl-major x))))))

'(_0)

Like the fresh operator, the all operator creates a new variable in the scope. Unlike the fresh operator, the
all operator effectively creates a constant. This semantics is similar to the proof technique of a for-all goal in
first-order logic: to prove ∀x .P , we fix a constant x and then prove P .
Consider the next example that synthesizes the identity function using the all operator.

> (run 1 f

(all (x)

(== x (app f x))))

'((tie (_0) _0))

The implementation of the all operator follows that of the fresh operator, except that the created variable is
a constant. In our implementation, we create an all variable as a free binding variable. Thus, the all variable
cannot be unified with anything but itself.

5 λKANREN AS A THEOREM PROVER
λProlog is often regarded as a proof system. With hohh, λKanren suits a theorem prover as well. This section
shows examples that use λKanren to prove intuitionistic style theorems.
We start with the definition of proved. At this moment, only ’trivial is proved.

(defrel (proved x)

(== x 'trivial))

Higher-order Logic Programming with λKanren • 1

Obviously, not everything is proved.

> (run 1 g

(all (p)

(proved p)))

'()

> (run 1 g

(proved g))

'(trivial)

Next, we prove the commutativity of conjuction. I.e., ∀p,q (p ∧ q) ⊃ (q ∧ p).

> (run 1 g

(all (p q)

(assume ((proved p) (proved q))

(proved q)

(proved p))))

'(_0)

The introduction rule of disjunction can be proved: ∀p,q p ⊃ (p ∨ q)

(run 1 goal

(all (p q)

(assume ((proved p))

(conde

[(proved p)]

[(proved q)]))))

'(_0)

6 CONCLUSION
λKanren is based on higher-order hereditary Harrop formulas. It extends µKanren with four operators, tie, app,
assume-rel, and all. In addition, unification (==) identifies αβ-equivalence between the binding operators.

Our implementation of λKanren is written in Racket by adding about 40 lines to µKanren. Overall, we appreciate
the simplicity provided by the shallow embedding techniques.

REFERENCES
[1] Krzysztof R. Apt and M. H. van Emden. Contributions to the Theory of Logic Programming. Journal of the ACM (JACM), 29(3):841–862,

July 1982. ISSN 0004-5411. doi: 10.1145/322326.322339. URL https://doi.org/10.1145/322326.322339.
[2] Daniel P. Friedman, William E. Byrd, Oleg Kiselyov, and Jason Hemann. The Reasoned Schemer, Second Edition, 2018.
[3] Jason Hemann and Daniel P. Friedman. µKanren: A Minimal Core for Relational Programming. In Proceedings of the 2013 Workshop on

Scheme and Functional Programming (Scheme’13), volume 6, 2013.
[4] Dale Miller. A Logic Programming Language with Lambda-abstraction, Function Variables, and Simple Unification. Journal of Logic and

Computation, 1(4):497–536, September 1991.
[5] Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic. Cambridge University Press, USA, 1st edition, 2012. ISBN

978-0-521-87940-8.
[6] Dale Miller, Gopalan Nadathur, and Andre Scedrov. HEREDITARY HARROP FORMULAS AND UNIFORM PROOF SYS-

TEMS. Unknown Host Publication Title, pages 98–105, January 1987. URL https://experts.umn.edu/en/publications/
hereditary-harrop-formulas-and-uniform-proof-systems. Publisher: IEEE.

https://doi.org/10.1145/322326.322339
https://experts.umn.edu/en/publications/hereditary-harrop-formulas-and-uniform-proof-systems
https://experts.umn.edu/en/publications/hereditary-harrop-formulas-and-uniform-proof-systems

1 • Weixi Ma, Kuang-chen Lu, and Daniel P. Friedman

[7] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a foundation for logic programming. Annals of
Pure and Applied Logic, 51(1):125–157, March 1991. ISSN 0168-0072. doi: 10.1016/0168-0072(91)90068-W. URL http://www.sciencedirect.
com/science/article/pii/016800729190068W.

http://www.sciencedirect.com/science/article/pii/016800729190068W
http://www.sciencedirect.com/science/article/pii/016800729190068W

	Abstract
	1 Introduction
	2 Higher-order Unification
	3 Implicational Goals
	4 Forall-quantification
	5 Kanren as a theorem prover
	6 conclusion
	References

