
MicroKanren in J: an Embedding of the Relational Paradigm in an
Array Language with Rank-Polymorphic Unification

RAOUL SCHORER, Geneva University Hospitals, Switzerland

This work presents a reimplementationwithin the array programming paradigm ofMicroKanren, a minimal relational language
designed to be embedded in host languages as a library. The particularities of the implementation relative to the array paradigm
are detailed. The implementation is discussed in relation to the reference Racket version and a rank-polymorphic unification
algorithm is presented. Those elements are discussed in light of future prospects.

CCS Concepts: • Computing methodologies → Logic programming and answer set programming; • Software and its
engineering → Language types.

Additional Key Words and Phrases: array programming, logic programming, microKanren, miniKanren, relational program-
ming, streams, unification

INTRODUCTION
Logic programming allows a high level of abstraction in both code and problem solving concepts. Language
representatives of this paradigm ofwhich Prolog is themost well-known traditionally aim at a declarative approach
and are remarkably versatile [21]. MiniKanren and its even more minimalist sibling language MicroKanren
offer an alternative and distinct tradeoffs with similar capabilities in the context of relational programming [6,
9]. MicroKanren semantics are designed to be easily transcribed to a variety of host languages, to the point
that implementing a shallow embedding of Micro- or MiniKanren as a library has become a rite of passage
for newcomers to the Kanren language family. The purely functional semantics of MicroKanren translates
to a great variety of programming paradigms with little change in general syntax and operators, yielding a
somewhat portable notation for relational programs [5]. It is also interesting that shallow embedding allows
Micro/MiniKanren to inherit host language characteristics. A notable illustration of this principle can be found
in OCanren, an embedding of Minikanren that cooperates with the underlying OCaml type system [20]. It
is therefore worthwile to explore other well-chosen host languages and their interaction with the relational
paradigm. This work presents an implementation of MicroKanren in the J array language and discusses the
resulting features in relation to a reference implementation in Racket as described by Hemann et al. [12]. We
begin by a short presentation of the array language J and the features that motivated its use. Next, we describe
the main points of the implementation of MicroKanren on top of J. We then examine example programs and
benchmarks. In the final section, we discuss related works as well as limitations and future prospects before
concluding. The main contributions of this paper are:
(1) to show that array rank operators allow flexible unification over multidimensional arrays.
(2) to provide a prototype Kanren implementation based exclusively on arrays with the long term goals of

• exploring adaptations of the logic programming paradigm to vector processing.

Author’s address: Raoul Schorer, Geneva University Hospitals, Switzerland, raoul.schorer@hcuge.ch.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

© 2020 Copyright held by the author(s).
miniKanren.org/workshop/2021/8-ART3

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

3 • Raoul Schorer

• developing a logic language hosted on vector platforms such as graphical processor units (GPU) or that
can make good use of single instruction multiple data (SIMD) instruction sets.

CHOOSING J
The array language J is a sibling of APL restricting its character set to ASCII. Interested readers unfamiliar with
J may find introductions and tutorials on the website (jsoftware.com), which will enable them to understand
the code below. Additionally, the J dictionary (jsoftware.com/wiki/nuvoc) contains accessible descriptions and
examples applications of all language primitives. Array languages are characterized by a mostly-pure functional
programming paradigm with severe syntactic constraints, and J is no exception. The power of array languages
resides in their vast collection of primitives usually implemented in a low-level language allowing high-level
array manipulation at speed. While J has most of the features that make a good Kanren host language (garbage
collection, object orientation, metaprogramming through quotation), some syntactic features such as the strict
limit of two arguments per function make the implementation less straightforward [10]. Below, we describe some
features that were most helpful in the implementation of MicroKanren in J.

Rank Polymorphism. Rank is a crucial concept in J and underlies the contributions made by this paper. The
rank of an array is defined as its number of dimensions. In an attempt at improved practicality, primitives were
made rank-polymorphic in implementations of some array languages such as J, thereby allowing the user to
choose the dimension along which a procedure is to be applied. Conceptually, rank is closely related to looping
constructs and emulates iteration over a particular dimension in the traditional nested loop program flow typical
of ALGOL-inspired languages. J boxing procedures allow a clear illustration of this concept. Starting from a flat
array of letters:
a. {~ 65 + i. 26

ABCDEFGHIJKLMNOPQRSTUVWXYZ

The rank of this array is 1, as shown by counting its dimensions.
$ a. {~ 65 + i. 26

1

Now, we have two available ranks for application: 0 (scalar) and 1. < and " are respectively the boxing and
rank operators. Notice the difference in boxing pattern when using different ranks:
<"0 a. {~ 65 + i. 26

+-+
|A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z|
+-+

<"1 a. {~ 65 + i. 26

+--------------------------+
|ABCDEFGHIJKLMNOPQRSTUVWXYZ|
+--------------------------+

, Vol. 1, No. 1, Article 3. Publication date: August 2021.

https://www.jsoftware.com/#/
https://code.jsoftware.com/wiki/NuVoc

Microkanren in J • 3

Similarly, this concept extends to any number of dimensions:
2 3 $ i. 6

0 1 2
3 4 5

<"1 [2 3 $ i. 6

+-----+-----+
|0 1 2|3 4 5|
+-----+-----+

<"2 [2 3 $ i. 6

+-----+
|0 1 2|
|3 4 5|
+-----+

This feature is extensively used throughout our implementation and forms the basis of a rank-polymorphic
unification procedure that will be described below.

Metaprogramming. We use J’s first-class quote and eval operators to delay and force evaluation. An internal value
can be automatically converted to its string representation by the runtime using the (5!:5) function, while
its counterpart ". evaluates J expressions in string form. Unlike Racket which has to interact with the lexical
context to recover variable bindings when using eval, J metaprogramming is much more primitive and done
purely through evaluation of strings without any notion of the surrounding environment.

Fixed Point and Recursion. The ^:_ primitive allows recursion up to a fixed point, which is critical in our
unification algorithm implementation heavily inspired by Robinson’s classic work [25]. J does not provide tail-call
optimization and recursion may result in stack overflow. While transforming the reference implementation to
use iteration instead of recursion is an option, the J F. operator family provides very flexible folding capabilities
used to circumvent restrictions on recursion.

Tree Manipulation. J differs from its more popular sibling APL by providing tree processing primitives. Tree
manipulation in array languages is considered a major weakness, but this has recently improved significantly
and has become a point of major research interest within the array language community [16]. J’s preferred
tree representation is nested arrays of boxed elements. The L: and S: primitives perform left pre-order tree
traversal and respectively apply a function in place or apply and collect leaves up to a user-defined tree height.
The intrinsic depth-first search capabilities of those primitives are of particular interest in the context of logic
programming. The primitive {:: forms the basis of our unification algorithm proper (see below). {:: takes a J
tree and returns a tree of identical shape where leaves have been replaced by paths to those leaves in left preorder
traversal, as exposed below:

, Vol. 1, No. 1, Article 3. Publication date: August 2021.

3 • Raoul Schorer

('a' ;< 'c';'d');<('b' ;< 'e';'f')

+---------+---------+
+-+-----+	+-+-----+												
	a	+-+-+			b	+-+-+							
			c	d						e	f		
		+-+-+				+-+-+							
+-+-----+	+-+-----+												
+---------+---------+

{:: ('a' ;< 'c';'d');<('b' ;< 'e';'f')

+-------------------------+-------------------------+
+-----+-----------------+	+-----+-----------------+																												
	+-+-+	+-------+-------+			+-+-+	+-------+-------+																							
		0	0			+-+-+-+	+-+-+-+					1	0			+-+-+-+	+-+-+-+												
	+-+-+			0	1	0			0	1	1					+-+-+			1	1	0			1	1	1			
			+-+-+-+	+-+-+-+						+-+-+-+	+-+-+-+																		
		+-------+-------+				+-------+-------+																							
+-----+-----------------+	+-----+-----------------+																												
+-------------------------+-------------------------+

MICROKANREN IMPLEMENTATION
This section describes the J implementation of the core MicroKanren operators with some MiniKanren extensions.
We modified these operators’ names to accordance with J’s restrictions on identifiers (table 1).

Table 1. J procedure names mapping to the reference implementation.

Scheme J
== equ
call/fresh fsh
disj dis
conj con
append app
append-map apm
var? var
find get
occurs? occ
ext-s ext
unify uni
run run

The reference implementation define-relation operator is replaced by quotation at the top of every relation
definition as described in Hemann et al. [12]. Just like for the Racket version, variables are defined as scalar
natural number values. In this section we discuss some of the implementation’s more interesting portions. The
term "list" in the context of our implementation denotes a flat array. The full code is available in appendix A at

, Vol. 1, No. 1, Article 3. Publication date: August 2021.

Microkanren in J • 3

the end of this paper as well as online. 1 The J version used was j901/j64avx2/linux release e, with library version
9.01.23.

Variable Scoping and Substitution
MicroKanren uses a substitution table for representing the most general unifier from mathematical logic. Ideally,
this should be implemented using a hash table or a datastructure with similar insertion and retrieval characteristics
although association listsmay be used instead. Associative arrays are traditional and often used inAPL descendents.
However, we will use a flat boxed array as described in Brown & Guerreiro for our substitutions [3]. First, this
removes some levels of indirections in our code when walking the substitution and follows the minimalistic spirit
of MicroKanren. Second and most importantly, variable scoping is defined by the length of the substitution array
as the semi-open interval [0 ; length), as below.
fsh =: ,<@#
fsh 3 ; 1 ; 2 ; 'a'

+-+-+-+-+-+
|3|1|2|a|4|
+-+-+-+-+-+

The above code block shows the application of fsh to an array of length 4. When using this array as a
substitution list, scoping rules respectively allow variables 0 through 3 in the original state and 0 through 4 after
extension by fsh. Position 0 contains the value 3 and points to this location in the list, which itself contains
the character a. Variable 0 is therfore bound to the value a. Variables 1 and 2 are not bound and hence point to
themselves. While this system works well in practice, it does not respect lexical scoping since the introduction of
a variable causes it to stay in scope wherever its associated substitution table is found. For example, the variables
in scope will be passed along when the substitution is returned from a procedure.

Unification
The Racket version of unification relies on tree recursion, which is an obvious choice in this context. Since J does
not offer advanced recursion facilities, we instead reuse the tree primitives depth-first search characteristics to
yield an iterative algorithm in an attempt to compensate for J’s weaknesses.

Walking The Substitution. get searches for the value of a variable in a substitution. Similarly to the reference
implementation, get is the identity function in case the argument is not found in the substitution. The definition
uses the u^:v y control flow operator where the predicate v passes its argument y to the function u on success.
In case of failure, the expression is the identity function and y is returned. This gives us "backtracking for free" in
a single operator. {:: retrieves the selected element from the substitution. This pointer-directed walk across the
substitution array is repeated until a fixed point is reached using ^:_, thereby allowing a terse expression of our
desired behaviour.
get =: {::~^:(var@])"(_ 0)^:_

The Occurs Check. The occurs check is non-optional in Kanren-style unification. This is again done using tree
recursion in Racket. Here, we rely on J’s S: operator to avoid writing the tree traversal ourselves. The occ
predicate is implemented by first checking whether the top-level elements to be compared are identical, in which
case we immediately fail since by definition identical terms do not include each other. We then traverse the tree
and flatten it to a list of leaves using < S: 0. Membership is then tested using e..
occ =: (e. < S: 0)`0:@.-:
1[https://github.com/Rscho314/mk]

, Vol. 1, No. 1, Article 3. Publication date: August 2021.

https://github.com/Rscho314/mk

3 • Raoul Schorer

Extending The Substitution. The orginal Racket code performs an occurs check and extends the state on failure of
the predicate. ext is more involved because it operates on the collected set of candidate substitutions it receives
from uni, using the largest possible fragment of the candidate substitution set on each iteration. Due to our
non-lexical scoping system, we have to verify whether the substitution already contains incompatible values
and abort if such is the case. This is done by grounding the variables in the tree y according to the existing
substitution list x (ext, line 4). _1 is the error code value (ext, line 8). Additionally, duplicate subterms have to
be filtered out (ext, line 5). Iterations of the while loop insert ground values into the substitution and attempt
to ground remaining variables until only free variables (or nothing) remains. This is done by following a chain
of pointers from the substitution as mentioned above (ext, lines 10-15). Finally, the remaining free variables
are inserted into the substitution (ext, line 17). The extension of the substitution list involves copying and no
sharing of the substitution table occurs, unlike Racket where the runtime can use structure-sharing to preserve
space-efficiency. In principle nothing forbids similar sharing in array languages, but most representatives of the
paradigm use mutable arrays and rely on interpreters of relatively simple structure to perform optimizations
through array-specific instructions such as single instruction multiple data (SIMD) intrinsics.
1 ext =: 4 : 0
2 while. 1
3 do.
4 y =. x&get L:0 y
5 y =. ~. (#~ (i.@# < i.&1"1@(-:"1/ |."1)~))~ y
6 if. '' -: y do. x return. end.
7 isvar =. > var &.> y
8 if. +./ (occ/"1 y) , (+:/"1 isvar) do. _1 return. end.
9 candidates =. (*:/"1 isvar) # y {"1~ |."1 isvar

10 if. '' -.@-: , candidates
11 do.
12 x =. ({:"1 candidates) (>@{."1 candidates) } x
13 y =. y -. candidates
14 else. break.
15 end.
16 end.
17 if. '' -.@-: , y do. ({:"1 y) (>@{."1 y) } x else. x end.
18)

Unification. Rank polymorphism in unification is implemented by boxing arguments u and v according to the
left ({.x) and right ranks ({:x) (uni, lines 4-5). This step is actually independent of the rest of the algorithm
which could be replaced by a totally different one without impacting rank polymorphism capabilities. Regarding
unification proper, the key to unification using mostly flat array operations is the {:: (map) J primitive. The
explanations and examples regarding > " and {:: found above ("Choosing J" section) are relevant here. {:: allows
us to partition the path tree between variables, corresponding substitutions and residual paths. The path tree is
built from u (left) and v (right) subtrees and flattened to a list of paths using < S: 1 (uni, line 7-8). We also flatten
the original tree to a list of leaves with S: 0 which allows us to create a boolean mask and extract variables
and substitutions paths in varpaths_candidates and substpaths_candidates (uni, line 9-10). Substitution
paths are obtained by boolean negation of the first path element of varpaths_candidates, which points to the
corresponding leaf in the opposing subtree (left or right). This avoids traversing the full tree twice (uni, line
10) but some of the resulting paths may not actually exist. Those spurious paths stem from variables having no
substitutions, i.e. free variables. Non-existing paths are identified by checking whether they exist in the set of all

, Vol. 1, No. 1, Article 3. Publication date: August 2021.

Microkanren in J • 3

path prefixes and free-variable-spurious-substitution pairs are removed if not found (uni, lines 11-13). Filtering
free variables yields the varpaths and substpaths lists. As a penultimate step, residual paths not belonging
to substitutions are tested for symmetry or emptiness (uni, lines 15-19). Finally, we build a table of variables
with their corresponding substitutions. This is then passed to ext which performs the actual extension of the
substitution list (uni, line 21). uni errors out if out-of-scope variables are present or if rank-defined reboxing
results in an unblanced number of cells.
1 uni =: 2 : 0
2 (_ _) u uni v y
3 :
4 u =. , <"({.x) u
5 v =. , <"({:x) v
6 if. (#u) ~: #v do. _1 return. end.
7 tree =. u;<v
8 paths =. (<S:1)@{:: tree
9 varpaths_candidates =. paths #~ var S:0 tree

10 substpaths_candidates =. ((-. &.>@{.) 0}]) &.> varpaths_candidates
11 prefix_paths =. ;@:(,@(<\) &.>)
12 subst_exists =. e.&(prefix_paths paths) substpaths_candidates
13 'varpaths substpaths' =. subst_exists&# &.> varpaths_candidates ;< substpaths_candidates
14 residual_paths =. paths -. varpaths , substpaths
15 if. -. *./ ((-.~ prefix_paths)~ residual_paths) e. prefix_paths substpaths
16 do. if. (0 = 2&|) # {::&tree &.> residual_paths
17 do. if. ~:/ ($~ (2,-:@#))~ {::&tree &.> residual_paths do. _1 return. end.
18 else. _1 return.
19 end.
20 end.
21 y ext {::&tree L:1 varpaths ,. substpaths
22)

At this point, we have all the pieces necessary to implement the equality constraint. As in the reference
implementation, this can be done in a straightforward manner by simply unifying ground terms. The result
is boxed to correspond to the Kanren custom of returning a list of substitutions even if there only one such
substitution. The example below shows the main advantage of our implementation. Here, J’s ability to operate
seamlessly over multidimensional arrays naturally extends to MicroKanren and allows us to unify two three-
dimensional arrays. One array contains the alphabet drawn from the ASCII set while the other contains a sequence
of the variables 0 through 25.
] abc =. (13 2 1 $;/ a. {~ 97+i.26) equ (13 2 1 $;/ i.26) fsh^:26 ''

+---+
|+-+|
||a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z||
|+-+|
+---+

The shape polymorphism inherent to our unification capabilities arises naturally from the use of J’s operators,
and therefore prevents unification of arrays of incompatible shapes. In this context though, incompatible does
not mean that unification is restricted to terms of identical shape. Through the direct manipulation of rank, we
can define which term fragments are to be unified. The example below illustrates this process: the left and right

, Vol. 1, No. 1, Article 3. Publication date: August 2021.

3 • Raoul Schorer

ranks are r espectively 0 and 1. This allows us to unify each of the two fresh variables 26 and 27 of the left array
with an entire row of the 2 X 6 letter array on the right. As is expected from MicroKanren relational semantics,
we can now use bound variables from the substitution table to produce an array of any desired shape. bpro is
syntactic sugar allowing simplified answer projection.
(26 27) bpro (3 :'(0 1) ((#y),(>:#y)) equ (2 6 $ > 15 4 0 13 20 19 1 20 19 19 4 17) fsh^:2 y') > abc

+------+------+
|peanut|butter|
+------+------+

Disjunction, Conjunction and Further Constraints
app, apm, dis and con are almost literal transcriptions of their Racket counterparts. The only modification resides
in delayed evaluation handling. J quotation implemented as the (5!:5) function results in a string that may
later be executed using the ". primitive. Expressions that are already in string form but require additional
quotation prior to execution are obtained using the quote function. Furthermore, our promises are boxed so that
they can be appended to substitutions, thereby constituting what is called an "immature stream" in Kanrens.
Promises are built both in app and apm, and also at the top level of every relation definition as a replacement
to Racket’s define-relation macro [12]. In the code below, 2&=@(3!:0)@> x is the equivalent of Racket’s
promise? predicate. line 5 in app builds the boxed string promise.
1 app =: 4 : 0
2 if. x -: ''
3 do. y
4 elseif. 2&=@(3!:0)@> x
5 do. < '(' , ((5!:5)<'y') , ') app ((3 :' , (quote 0 {:: x) , ')'''')'
6 elseif. do. ({. , (y app~ }.)) x
7 end.
8)

In our J implementation we bypassed the call/initial-state - take - pull call chain from the reference
implementation and directly implemented run. J’s F: primitive allows us to iterate over the immature stream
and collect results as a mature stream all at once. On each iteration, the promise resulting from the previous
execution is forced using ". and the result is collected by taking the head ({.) of the new value. The definition of
run can be found in appendix A.

EXAMPLE GOALS AND BENCHMARKING
Here, we illustrate the execution steps of our implementation on a simple goal. The fives_and_sixes goal
yields a stream of alternating values up to a user-defined length and uses run facilities identical to the reference
implementation. fives_and_sixes is implemented as the disjunction of subgoals fives and sixes and shows
that goal combinator functionalities similar to the reference implementation are available. Our ability to generate
a stream of alternating values illustrates the interleaving search typical of Kanrens and the fact that our program
correctly handles infinte recursive goals. As shown below, the execution of a recursive goal yields a pair of a
value and a newly built promise. On further execution, the value is added to the result while the promise is forced
to yield the following value-promise pair in the sequence.

, Vol. 1, No. 1, Article 3. Publication date: August 2021.

Microkanren in J • 3

fives_and_sixes fsh ''
10 run fives_and_sixes fsh ''

+---+---+
+-+	((<,<6.),<'sixes (,<00)') app ((3 :'fives (,<00)')'')		
	5		
+-+			
+---+---+

+---+---+---+---+---+---+---+---+---+---+
+-+	+-+	+-+	+-+	+-+	+-+	+-+	+-+	+-+	+-+																				
	5			6			5			6			5			6			5			6			5			6	
+-+	+-+	+-+	+-+	+-+	+-+	+-+	+-+	+-+	+-+																				
+---+---+---+---+---+---+---+---+---+---+

We will now explore some goals through microbenchmarking which will reveal some of the stronger and
weaker points of the J implementation. All benchmarking programs can be consulted in appendix B. Performance
was not the main focus in this work. First, let us test the unification of two flat arrays of size N, one of which
comprises only variables and the other only random float values (goal floats, appendix B).

Table 2. flat array of random floats unification benchmark (mean of 10 runs). Racket CS 7.7 on an Intel Core i7-6800K. Time
columns are in seconds. Other columns are cumulative (cum.), step-by-step (step) and raw time ratios (Racket vs. J).

J Racket Racket vs. J
N time cum. step time cum. step
4 0.000165 _ _ 0 _ _ _
16 0.000242 1.5 1.5 0 _ _ _
64 0.001764 10.7 7.3 0 _ _ _
256 0.022942 139 13 0.0001 _ _ 230
1024 0.327932 1987.5 14.3 0.003 _ 30 109
4096 4.84869 29386 14.8 0.0521 _ 17.4 93
16384 77.4688 469507.9 16 1.1027 _ 21.2 70

The reference implementation is much faster but raw running time comparison is not the most interesting
element of our benchmarks given the completely different runtime architectures. Results from table 2 suggest that
our trivial unification algorithm scales at least as well and perhaps better than the original in this case although
J’s interpreter is rather simplistic compared to Racket’s compiler. This benchmark represents a particular situation
that is most favourable to the J program because all variables are immediately unified with a value. In such a
situation, the ext while loop immediately breaks without iterating as there are no candidate terms to filter, no
remaining free variables and the whole array is therefore processed all at once without the need to walk the
substitution list. Let us now illustrate the opposite situation. The following benchmark again tests the unification
of two flat arrays but this time with a single starting value that propagates to the whole result array through a
chain of variables (goal as, appendix B).
From the results in table 3, we see that Racket now has a dramatic advantage in speed. The same advantage

would likely be seen in step ratios but J is slow enough on this benchmark that further testing of algorithmic
scaling goes beyond our available time resources. Those results were expected since the test causes N iterations of
the interpreted while loop in ext, and walking the substitution list is required on each iteration. As an intermediate
between the programs from tables 2 and 3 additionally mobilizing the run facilities in both implementations.

, Vol. 1, No. 1, Article 3. Publication date: August 2021.

3 • Raoul Schorer

Table 3. unification benchmark of two flat arrays comprising only variables at the exception of a single value that propagates
to yield a list of size N including only repeated instances of the single starting value (mean of 10 runs). Racket CS 7.7 on an
Intel Core i7-6800K. Time columns are in seconds. Other columns are cumulative (cum.), step-by-step (step) and raw time
ratios (Racket vs. J).

J Racket Racket vs. J
N time cum. step time cum. step
4 0.000823 _ _ 0 _ _ _
16 0.003725 4.5 4.5 0 _ _ _
64 0.014833 18 4 0 _ _ _
256 0.22464 273 15.1 0 _ _ _
1024 7.53526 9155.9 33.5 0.0009 _ _ 8373
4096 411.842 500415.6 54.7 0.0185 _ 20.6 22262

RELATED WORK
Logic programming over arrays is not a new idea but has historically enjoyed relatively little interest compared
to LISP or Prolog solutions both prioritzing homoiconicity and lists as fundamental datastructure, making them
ideal candidates for symbolic applications. In the array language domain some commercial systems include a
limited unification system in their library, although array languages have traditionally focused on statistical and
numerical computing [1]. Work focused on unification algorithms in the array context was explored by Brown et
al. in 1987 [3]. By then, a large corpus of literature regarding logic capabilities of array languages was already
available and those languages were already viewed by some as candidates for the "5th generation" computing
project [22]. Following the work of Brown et al., predicate calculus was implemented in APL2 by Engelmann et
al., bringing array languages closer to the Prolog world [8]. The newer trend of artificial intelligence based upon
statistical rather than symbolic computing was then followed by APL-family representatives, unsurprisingly
revealing themselves very capable environments in those array-heavy computation models up to this day [28].
The mixing of array- and logic-based solutions remains a research topic of substantial interest in a variety of fields,
from end-user ergonomics to compilation techniques [7, 29]. Conceptually, hybrid reasoning may result in broader
capabilities for artificial intelligence systems. In hierarchical control systems such as those found in behaviour-
based robotics, the high-level symbolic component can rely on a reactive lower-level statistical (also termed
subsymbolic) layer. The higher-levels benefit from relaxed time constraints allowing them to perform planning.
Hybrid reasoning can result in a model of artificial intelligence capable of reasoning through induction, decuction,
abduction and analogy and emulates natural systems [2]. Some recent works suggest that the unification of
symbolic and statistical artificial intelligence may perhaps find potential for progress in the array-language
world [19]. Indeed, arrays are amust-have for statistical computing and easy manipulation of arrays therefore must
be available to the user wanting to combine statistical and symbolic reasoning. There are currently a variety of
possibilities for programmers wanting to combine logic and array programming ranging from impure (setarg/3)
or unwieldy (arg/3) Prolog idioms to non Turing-completeness a la Datalog. Those solutions represent two
faces of the same Prolog coin, the former suffering from the usual pain points regarding logical purity and
termination guarantees, while the latter imposes important semantic restrictions on the user. Furthermore, the
implementation of performant Prolog or similar systems is far from trivial.

LIMITATIONS AND FUTURE PROSPECTS
The limitations of our system are in part those of MicroKanren in that only the equality constraint is implemented
andmost interesting logic problems require other more expressive constraints. Unfortunately, syntactic constraints

, Vol. 1, No. 1, Article 3. Publication date: August 2021.

Microkanren in J • 3

make the elaboration of programs in our system rather fastidious and will require the addition of syntactic
sugar to ease the writing of additional constraints. A second limitation is that as in the original MicroKanren we
abandon most of the arithmetic capabilities of the host language by using natural numbers as variables. This is
an opportunity to implement a relational arithmetic suite in the spirit of Kiselyov et al. [18]. Finally, the rank-
polymorphism of our unification process is a natural extension benefiting from the host language’s capabilities and
is actually completely distinct from the unification algorithm itself. In its current form, our unification procedure
is expected to be slow with regard to the state of the art and should perhaps be replaced by a program with
better time and space complexity as described for example in Paterson & Wegman [24]. Interestingly, performant
unification algorithms aim at the constitution of equivalence classes and do not use a "find" procedure. Such
limitation of indirections in our program would perhaps allow a more vector-friendly implementation. However,
some research suggests that the theoretical advantages of alternatives to Robinson’s algorithm are not always
realized in practice [14]. In this context, a first step will be the developement of an appropriate benchmarking
framework geared towards vectorization opportunities. While our current implementation does not offer the
features of mature logic environments, it delivers on the promise of a lightweight and logically pure basis for
further exploration. Indeed, porting MicroKanren to an alternative datastructure basis might result in a new
program writing style deriving from different tradeoffs imposed from the underlying arrays. This has not been
explored in this paper, as the focus was on showing that the core language could be adapted. By implementing
Kanren on top of an array language, we get close to a relational database management system and its traditional
command language: SQL. MiniKanren-inspired systems for database querying have been deployed in production
environments with success [4, 27]. Although extensions have recently made SQL Turing-complete, its impure
semantics do not allow it to be considered a strict implementation of either predicate calculus or relational
algebra. In contrast, MicroKanren has very clean semantics and holds potential for user-defined extensions,
parallelism and constraint logic programming. The parallel drawn to database systems does not stop here: J
includes Jd, an integrated column-store database. This is an opportunity for the implementation of a tabled version
of MicroKanren based on Byrd’s thesis that hopefully would improve both efficiency and termination guarantees
of the system [6]. A second opportunity offered by Jd is to use it as a constraint store to implement constraint
MicroKanren as described by Hemann et al. [11]. This would bring us closer to systems such as XSB Prolog while
remaining in the purely relational context [26]. Another potential improvement would be constructive negation,
which was recently described for MiniKanren and especially in combination with tabling would take us closer
to supporting stable model semantics in Kanrens [23]. Finally, running a MicroKanren-inspired system on the
GPU for massive parallelism is an encouraging research perspective that was already considered in Eric Holk’s
Harlan project which initially implemented a MiniKanren type checker and region inferencer [15]. In the array
language world, the APL Co-dfns compiler recently brought us closer to running general programs on the GPU.
However, Co-dfns does not currently provide delayed evaluation capabilities nor does it support nested arrays
and alternatives will be required if the microKanren path is to be pursued on this platform [17]. Running on top
of high-level GPU languages such as Futhark might also be considered, especially since prior art exists for this
use case in the TAIL APL compiler [13].

CONCLUSION
This work led us to the fact that J has many features making it ideal for the developement of a logic library, and
that unification can be made rank-polymorphic by using characteristics of the array language paradigm as a
stepping stone. While there are many enticing future perspectives in the line of research combining array and
logic programming, many of those are open research problems. Despite that, this work provides a starting point
for more involved forays into array-based pure relational programming.

, Vol. 1, No. 1, Article 3. Publication date: August 2021.

3 • Raoul Schorer

ACKNOWLEDGMENTS
The author would like to express his gratitude to Dr. J. Hemann for his kindness and proofreading of themanuscript.
Thanks also go to Dr. A. Hsu for his encouragments and to all members of the programming@jsoftware.com
mailing list and r/apljk subreddit and especially Henry Rich, Julien Fondren and Raul Miller for their help with J
language concepts. Finally, the author thanks the reviewers of the ICFP 2020 MiniKanren workshop for their
useful advice.

REFERENCES
[1] [n.d.]. Dyalog APL - Unification of Expressions (Visited May 11, 2020). https://dfns.dyalog.com/n_unify.htm.
[2] J.S. Albus. 1993. A Reference Model Architecture for Intelligent Systems Design. In An Introduction to Intelligent and Autonomous

Control. Kluwer Academic Publishers, 27–56.
[3] James A. Brown and Ramiro Guerreiro. 1987. APL2 Implementations of Unification. In Proceedings of the International Conference on APL:

APL in Transition (APL ’87). Association for Computing Machinery, Dallas, Texas, USA, 216–225. https://doi.org/10.1145/28315.28342
[4] Craig Brozefsky. 2013. SQL and Core.Logic Killed My ORM ; ClojureWest 2013 ; (https://www.infoq.com/presentations/Core-logic-SQL-

ORM/).
[5] William Byrd. 2017. Relational Interpreters, Program Synthesis, and Barliman: Strange, Beautiful, and Possibly Useful ; CodeMesh 2017

London ; (https://codemesh.io/codemesh2017/william-e-byrd).
[6] William E. Byrd. 2009. Relational Programming in Minikanren: Techniques, Applications, and Implementations. Ph.D. Dissertation. Indiana

University, USA. Advisor(s) Friedman, Daniel P.
[7] Philip T. Cox and Patrick Nicholson. 2008. Unification of Arrays in Spreadsheets with Logic Programming. In Practical Aspects of

Declarative Languages (Lecture Notes in Computer Science), Paul Hudak and David S. Warren (Eds.). Springer, Berlin, Heidelberg, 100–115.
https://doi.org/10.1007/978-3-540-77442-6_8

[8] U. Engelmann, Th. Gerneth, and H. P. Meinzer. 1989. Implementation of Predicate Logic in APL2. ACM SIGAPL APL Quote Quad 19, 4
(July 1989), 124–128. https://doi.org/10.1145/75145.75162

[9] Jason Hemann and Daniel P Friedman. 2013. 𝜇Kanren: A Minimal Functional Core for Relational Programming. In Scheme and Functional
Programming Workshop, Vol. 2013.

[10] Jason Hemann and Daniel P Friedman. 2015. How to Be a Good Host: miniKanren as a Case Study ; Curry On 2015 Prague ;
(https://www.curry-on.org/2015/sessions/how-to-be-a-good-host-minikanren-as-a-case-study.html).

[11] Jason Hemann and Daniel P. Friedman. 2017. A Framework for Extending microKanren with Constraints. Electronic Proceedings in
Theoretical Computer Science 234 (Jan. 2017), 135–149. https://doi.org/10.4204/EPTCS.234.10 arXiv:1701.00633

[12] Jason Hemann, Daniel P. Friedman, William E. Byrd, and Matthew Might. 2016. A Small Embedding of Logic Programming with a
Simple Complete Search. In Proceedings of the 12th Symposium on Dynamic Languages - DLS 2016. ACM Press, Amsterdam, Netherlands,
96–107. https://doi.org/10.1145/2989225.2989230

[13] Troels Henriksen, Martin Dybdal, Henrik Urms, Anna Sofie Kiehn, Daniel Gavin, Hjalte Abelskov, Martin Elsman, and Cosmin Oancea.
2016. APL on GPUs: A TAIL from the Past, Scribbled in Futhark. In Proceedings of the 5th International Workshop on Functional High-
Performance Computing (FHPC 2016). Association for ComputingMachinery, Nara, Japan, 38–43. https://doi.org/10.1145/2975991.2975997

[14] Kryštof Hoder and Andrei Voronkov. 2009. Comparing Unification Algorithms in First-Order Theorem Proving. In KI 2009: Advances in
Artificial Intelligence (Lecture Notes in Computer Science), Bärbel Mertsching, Marcus Hund, and Zaheer Aziz (Eds.). Springer, Berlin,
Heidelberg, 435–443. https://doi.org/10.1007/978-3-642-04617-9_55

[15] Eric Holk, William E Byrd, Nilesh Mahajan, Jeremiah Willcock, Arun Chauhan, and Andrew Lumsdaine. 2011. Declarative Parallel
Programming for GPUs. 297–304.

[16] Aaron W. Hsu. 2016. The Key to a Data Parallel Compiler. In Proceedings of the 3rd ACM SIGPLAN International Workshop on Libraries,
Languages, and Compilers for Array Programming (ARRAY 2016). Association for Computing Machinery, Santa Barbara, CA, USA, 32–40.
https://doi.org/10.1145/2935323.2935331

[17] Aaron W. Hsu. 2019. A Data Parallel Compiler Hosted on the GPU. (Nov. 2019).
[18] Oleg Kiselyov, William E Byrd, Daniel P Friedman, and Chung-chieh Shan. 2008. Pure, Declarative, and Constructive Arithmetic

Relations (Declarative Pearl). In International Symposium on Functional and Logic Programming. Springer, 64–80.
[19] Ryosuke Kojima and Taisuke Sato. 2019. A Tensorized Logic Programming Language for Large-Scale Data. arXiv:1901.08548 [cs] (Jan.

2019). arXiv:1901.08548 [cs]
[20] Dmitrii Kosarev and Dmitry Boulytchev. 2018. Typed Embedding of a Relational Language in OCaml. Electronic Proceedings in Theoretical

Computer Science 285 (Dec. 2018), 1–22. https://doi.org/10.4204/EPTCS.285.1 arXiv:1805.11006
[21] Robert Kowalski and Steve Smoliar. 1982. Logic for Problem Solving. ACM SIGSOFT Software Engineering Notes 7, 2 (April 1982), 61–62.

https://doi.org/10.1145/1005937.1005947

, Vol. 1, No. 1, Article 3. Publication date: August 2021.

https://doi.org/10.1145/28315.28342
https://doi.org/10.1007/978-3-540-77442-6_8
https://doi.org/10.1145/75145.75162
https://doi.org/10.4204/EPTCS.234.10
https://arxiv.org/abs/1701.00633
https://doi.org/10.1145/2989225.2989230
https://doi.org/10.1145/2975991.2975997
https://doi.org/10.1007/978-3-642-04617-9_55
https://doi.org/10.1145/2935323.2935331
https://arxiv.org/abs/1901.08548
https://doi.org/10.4204/EPTCS.285.1
https://arxiv.org/abs/1805.11006
https://doi.org/10.1145/1005937.1005947

Microkanren in J • 3

[22] C. D. McCrosky, J. J. Glasgow, andM. A. Jenkins. 1984. Nial: A Candidate Language for Fifth Generation Computer Systems. In Proceedings
of the 1984 Annual Conference of the ACM on The Fifth Generation Challenge (ACM ’84). Association for Computing Machinery, New
York, NY, USA, 157–166. https://doi.org/10.1145/800171.809618

[23] Evgenii Moiseenko. 2019. Constructive Negation for MiniKanren. https://www.semanticscholar.org/paper/Constructive-Negation-for-
MiniKanren-Moiseenko/1b7fd5635770759232f3d88682c4d5bb7b5a7b54.

[24] M. S. Paterson andM. N.Wegman. 1978. Linear Unification. J. Comput. System Sci. 16, 2 (April 1978), 158–167. https://doi.org/10.1016/0022-
0000(78)90043-0

[25] J. A. Robinson. 1965. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM 12, 1 (Jan. 1965), 23–41. https://doi.org/10.
1145/321250.321253

[26] Konstantinos Sagonas, Terrance Swift, and David S. Warren. 1994. XSB as an Efficient Deductive Database Engine. In In Proceedings of
the ACM SIGMOD International Conference on the Management of Data. ACM Press, 442–453.

[27] Ryan Senior. 2012. Practical Core.Logic ; ClojureWest 2012 ; (https://www.infoq.com/presentations/core-logic/).
[28] Artjoms Šinkarovs, Robert Bernecky, and Sven-Bodo Scholz. 2019. Convolutional Neural Networks in APL. In Proceedings of the 6th

ACM SIGPLAN International Workshop on Libraries, Languages and Compilers for Array Programming (ARRAY 2019). Association for
Computing Machinery, Phoenix, AZ, USA, 69–79. https://doi.org/10.1145/3315454.3329960

[29] Justin Slepak, Panagiotis Manolios, and Olin Shivers. 2018. Rank Polymorphism Viewed as a Constraint Problem. In Proceedings of the
5th ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers for Array Programming (ARRAY 2018). Association for
Computing Machinery, Philadelphia, PA, USA, 34–41. https://doi.org/10.1145/3219753.3219758

APPENDIX A: MICROKANREN SOURCE
1 var =: -.@#@$*.e.&4 1@(3!:0)
2 get =: {::~^:(var@])"(_ 0)^:_
3 occ =: (e. < S: 0)`0:@.-:
4 ext =: 4 : 0
5 while. 1
6 do.
7 y =. x&get L:0 y
8 y =. ~. (#~ (i.@# < i.&1"1@(-:"1/ |."1)~))~ y
9 if. '' -: y do. x return. end.

10 isvar =. > var &.> y
11 if. +./ (occ/"1 y) , (+:/"1 isvar) do. _1 return. end.
12 candidates =. (*:/"1 isvar) # y {"1~ |."1 isvar
13 if. '' -.@-: , candidates
14 do.
15 x =. ({:"1 candidates) (>@{."1 candidates) } x
16 y =. y -. candidates
17 else. break.
18 end.
19 end.
20 if. '' -.@-: , y do. ({:"1 y) (>@{."1 y) } x else. x end.
21)
22 uni =: 2 : 0
23 (_ _) u uni v y
24 :
25 u =. , <"({.x) u
26 v =. , <"({:x) v
27 if. (#u) ~: #v do. _1 return. end.

, Vol. 1, No. 1, Article 3. Publication date: August 2021.

https://doi.org/10.1145/800171.809618
https://doi.org/10.1016/0022-0000(78)90043-0
https://doi.org/10.1016/0022-0000(78)90043-0
https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/3315454.3329960
https://doi.org/10.1145/3219753.3219758

3 • Raoul Schorer

28 tree =. u;<v
29 paths =. (<S:1)@{:: tree
30 varpaths_candidates =. paths #~ var S:0 tree
31 substpaths_candidates =. ((-. &.>@{.) 0}]) &.> varpaths_candidates
32 prefix_paths =. ;@:(,@(<\) &.>)
33 subst_exists =. e.&(prefix_paths paths) substpaths_candidates
34 'varpaths substpaths'=.subst_exists&#&.>varpaths_candidates;<substpaths_candidates
35 residual_paths =. paths -. varpaths , substpaths
36 NB.check if residual values are inside a substitution
37 if. -. *./ ((-.~ prefix_paths)~ residual_paths) e. prefix_paths substpaths
38 NB.if not inside a substitution, check if non-identical and if so, fail.
39 do. if. (0 = 2&|) # {::&tree &.> residual_paths
40 do. if. ~:/ ($~ (2,-:@#))~ {::&tree &.> residual_paths do. _1 return. end.
41 else. _1 return.
42 end.
43 end.
44 y ext {::&tree L:1 varpaths ,. substpaths
45)
46 equ =: 2 : 0
47 (_ _) u equ v y
48 :
49 < x (y get u) uni (y get v) y
50)
51 fsh =: ,<@#
52 app =: 4 : 0
53 if. x -: ''
54 do. y
55 elseif. 2&=@(3!:0)@> x
56 do. < '(' , ((5!:5)<'y') , ') app ((3 :' , (quote 0 {:: x) , ')'''')'
57 elseif. do. ({. , (y app~ }.)) x
58 end.
59)
60 apm =: 2 : 0
61 if. u -: ''
62 do. ''
63 elseif. 2&=@(3!:0)@> u
64 do. < '((3 :' , (quote@> u) , ')'''') apm (' , ((5!:5)<'v') , ')'
65 elseif. do. (v (>u)) app (}.u) apm v
66 end.
67)
68 dis =: 2 : '(u y) app (v y)'
69 con =: 2 : '(u y) apm v'
70 ground =: 3 : '(y&get L:0)^:_ y'
71 runhelper =: (".@(1&{::) , (<: &.>@{:)) [_2&Z:@-.@*@(2&{::)
72 run =: 2 : 0

, Vol. 1, No. 1, Article 3. Publication date: August 2021.

Microkanren in J • 3

73 if. u > 1
74 do. 'initval initprom' =. v y
75 initval ; ground &.> runhelper F: {. _ ; initprom ; < <: u
76 elseif. u = 1 do. {. v y
77 elseif. u = 0 do. ''
78 elseif. do. _1
79 end.
80 :
81 if. u > 1
82 do. 'initval initprom' =. v y
83 (x&{ &.> initval) ; (x&{@ground &.>) runhelper F: {. _ ; initprom ; < <: u
84 elseif. u = 1 do. {. v y
85 elseif. u = 0 do. ''
86 elseif. do. _1
87 end.
88)
89 bpro =: 4 : '(>y)&get L:0 x&{ > y'
90 upro =: 4 : '((>y)&get L:0)@> x&{ > y'

APPENDIX B: BENCHMARKING CODE

J

floats =: (3 : '(0 0) y uni (i. # y) fsh^:(#y) '''' ')
floats_perf =: 3 : 0
n =. */\ 4 #~ y
data =. (?@#&0) &.> ;/ n
t =. (x:!.0)(6!:2)@> 'floats '&,@":@(?@#&0) &.> ;/ n
ct =. _ , */\ (x:2) %~/\ ; t
st =. _ , (x:2) %~/\ ; t
legend =. 'N';'time [s]';'cumulative time ratio';'step time ratio'
legend , <"0 n ,. t ,. ct ,. st
)
floats_perf 7
as =: 3 : '(0 0) ((<''a'') , ;/ i. <: y) uni (;/ i. y) (;/ i. y)'
as_perf =: 3 : 0
n =. */\ 4 #~ y
t =. (x:!.0) (6!:2)@> ('as ' , ":) &.> ;/ n
ct =. _ , */\ (x:2) %~/\ ; t
st =. _ , (x:2) %~/\ ; t
legend =. 'N';'time [s]';'cumulative time ratio';'step time ratio'
legend , <"0 n ,. t ,. ct ,. st
)
as_perf 6

Racket

, Vol. 1, No. 1, Article 3. Publication date: August 2021.

3 • Raoul Schorer

(require microkanren
atomichron
racket/flonum)

(define (powers-of-n n iterations)
(map (lambda (exponent) (expt n (add1 exponent))) (build-list iterations values)))

(define (gensym-list n)
(build-list n (lambda (x) (gensym))))

(define (random-float-list n)
(define rg (make-pseudo-random-generator))
(for/list ([i (build-list n values)]) (flrandom rg)))

(define (time-in-seconds benchmark-times)
(map (lambda (n) (exact->inexact (/ n (expt 10 9)))) benchmark-times))

(define (random-floats-benchmark l r)
(make-microbenchmark
#:name 'random-floats-benchmark
#:iterations 1
#:microexpression-iterations 10
#:microexpression-builder
(lambda (iteration)
(make-microexpression #:thunk (lambda () (unify l r '()))))))

(define float-times
(map
(lambda (x)
(let ([left (random-float-list x)]

[right (build-list x values)])
(microbenchmark-result-average-real-nanoseconds
(microbenchmark-run! (random-floats-benchmark left right)))))

(powers-of-n 4 7)))
(begin (display "time in seconds (random floats): ") (time-in-seconds float-times))
(define (as-benchmark l r)

(make-microbenchmark
#:name 'as-benchmark
#:iterations 1
#:microexpression-iterations 10
#:microexpression-builder
(lambda (iteration)
(make-microexpression #:thunk (lambda () (unify l r '()))))))

(define as-times
(map
(lambda (x)
(let ([left (cons #\a (build-list (sub1 x) values))]

[right (build-list x values)])
(microbenchmark-result-average-real-nanoseconds

(microbenchmark-run! (as-benchmark left right)))))

, Vol. 1, No. 1, Article 3. Publication date: August 2021.

Microkanren in J • 3

(powers-of-n 4 7)))
(begin (display "time in seconds (list of as): ") (time-in-seconds as-times))

, Vol. 1, No. 1, Article 3. Publication date: August 2021.

	Abstract
	Acknowledgments
	References

