
An Empirical Study of Partial Deduction for miniKanren∗

EKATERINA VERBITSKAIA, DANIIL BEREZUN, and DMITRY BOULYTCHEV, Saint Petersburg
State University, Russia and JetBrains Research, Russia

We explore partial deduction, an advanced specialization technique aimed at improving the performance of a relation in
the given direction, in the context of miniKanren. On several examples, we demonstrate issues which arise during partial
deduction of relational programs. We describe a novel approach to specialization of miniKanren based on partial deduction
and supercompilation. Although the proposed approach does not give the best results in all cases, we view it as a stepping
stone towards the efficient optimization of miniKanren.

CCS Concepts: • Software and its engineering→ Constraint and logic languages; Source code generation.

Additional Key Words and Phrases: relational programming, partial deduction, specialization

1 INTRODUCTION

The core feature of the family of relational programming languages miniKanren1 is their ability to run a program
in different directions. Having specified a relation for adding two numbers, one can also compute the subtraction
of two numbers or find all pairs of numbers which can be summed up to get the given one. Program synthesis
can be done by running backwards a relational interpreter for some language. In general, it is possible to create a
solver for a recognizer by translating it into miniKanren and running in the appropriate direction [13].
The search employed in miniKanren is complete which means that every answer will be found, although it

may take a long time. The promise of miniKanren falls short when speaking of performance. The running time
of a program in miniKanren is highly unpredictable and varies greatly for different directions. What is even
worse, it depends on the order of the relation calls within a program. One order can be good for one direction,
but slow down the computation drastically in the other direction.

Specialization or partial evaluation [7] is a technique aimed at improving the performance of a program given
some information about it beforehand. It may either be a known value of some argument, its structure (i.e. the
length of an input list) or, in case of a relational program, — the direction in which it is intended to be run.
An earlier paper [13] showed that conjunctive partial deduction [3] can sometimes improve the performance of
miniKanren programs. Unfortunately, it may also not affect the running time of a program or even make it
slower.

Control issues in partial deduction of logic programming language Prolog have been studied before [11]. The
ideas described there are aimed at left-to-right evaluation strategy of Prolog. Since the search in miniKanren is
complete, it is safe to reorder some relation calls within the goal ahead-of-time for better performance. While

∗The reported study was funded by RFBR, project number 18-01-00380
1miniKanren language web site: http://minikanren.org. Access date: 17.07.2020.

Authors’ address: Ekaterina Verbitskaia, kajigor@gmail.com; Daniil Berezun, daniil.berezun@jetbrains.com; Dmitry Boulytchev,
dboulytchev@math.spbu.ru, Saint Petersburg State University, Russia , JetBrains Research, Russia.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

© 2020 Copyright held by the author(s).
miniKanren.org/workshop/2021/8-ART9

http://minikanren.org
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

9 • Verbitskaia, Berezun and Boulytchev.

sometimes conjunctive partial deduction gives great performance boost, sometimes it does not behave as well as
it could have.
In this paper, we show on examples some issues which conjunctive partial deduction faces. We also de-

scribe conservative partial deduction — a novel specialization approach for the relational programming language
miniKanren. We compare it to the existing specialization algorithms on several programs and discuss why some
miniKanren programs run slower after specialization.

2 RELATED WORK

Specialization is an attractive technique aimed to improve the performance of a program if some of its arguments
are known statically. Specialization is studied for functional, imperative and logic programing and comes in
different forms: partial evaluation [7] and partial deduction [12], supercompilation [15], distillation [5], and many
more.
The heart of supercompilation-based techniques is driving — a symbolic execution of a program through all

possible execution paths. The result of driving is a process tree where nodes correspond to configurations which
represent computation state. For example, in the case of pure functional programming languages, the computa-
tional state might be a term. Each path in the tree corresponds to some concrete program execution. The two
main sources for supercompilation optimizations are aggressive information propagation about variables’ values,
equalities and disequalities, and precomputing of all deterministic semantic evaluation steps. The latter process,
also known as deforestation, means combining of consecutive process tree nodes with no branching. When the tree
is constructed, the resulting, or residual, program can be extracted from the process tree by the process called
residualization. Of course, process tree can contain infinite branches.Whistles — heuristics to identify possibly
infinite branches — are used to ensure supercompilation termination. If a whistle signals during the construction
of some branch, then something should be done to ensure termination. The most common approaches are either
to stop driving the infinite branch completely (no specialization is done in this case and the source code is blindly
copied into the residual program) or to fold the process tree to a process graph. The main instrument to perform
such a folding is generalization. Generalization, abstracting away some computed data about the current term,
makes folding possible. One source of infinite branches is consecutive recursive calls to the same function with
an accumulating parameter: by unfolding such a call further one can only increase the term size which leads to
nontermination. The accumulating parameter can be removed by replacing the call with its generalization. There
are several ways to ensure process correctness and termination, most-specific generalization (anti-unification)
and homeomorphic embedding [6, 9] as a whistle being the most common.

While supercompilation generally improves the behaviour of input programs and distillation can even provide
superlinear speedup, there are no ways to predict the effect of specialization on a given program in the general.
What is worse, the efficiency of residual program from the target language evaluator point of view is rarely
considered in the literature. The main optimization source is computing in advance all possible intermediate and
statically-known semantics steps at program transformation-time. Other criteria, like the size of the generated
program or possible optimizations and execution cost of different language constructions by the target language
evaluator, are usually out of consideration [7]. It is known that supercompilation may adversely affect GHC
optimizations yielding standalone compilation more powerful [1, 8] and cause code explosion [14]. Moreover, it
may be hard to predict the real speedup of any given program on concrete examples even disregarding the problems
above because of the complexity of the transformation algorithm. The worst-case for partial evaluation is when all
static variables are used in a dynamic context, and there is some advice on how to implement a partial evaluator as
well as a target program so that specialization indeed improves its performance [2, 7]. There is a lack of research
in determining the classes of programs which transformers would definitely speed up.

, Vol. 1, No. 1, Article 9. Publication date: August 2021.

An Empirical Study of Partial Deduction for miniKanren • 9

Conjunctive partial deduction [3] makes an effort to provide reasonable control for the left-to-right evaluation
strategy of Prolog. CPD constructs a tree which models goal evaluation and is similar to a SLDNF tree, then
a residual program is generated from this tree. Partial deduction itself resembles driving in supercompilation [4].
The specialization is done in two levels of control: the local control determines the shape of the residual programs,
while the global control ensures that every relation which can be called in the residual program is indeed defined.
The leaves of local control trees become nodes of the global control tree. CPD analyses these nodes at the global
level and runs local control for all those which are new.
At the local level, CPD examines a conjunction of atoms by considering each atom one-by-one from left to

right. An atom is unfolded if it is deemed safe, i.e. a whistle based on homeomorphic embedding does not signal
for the atom. When an atom is unfolded, a clause whose head can be unified with the atom is found, and a new
node is added into the tree where the atom in the conjunction is replaced with the body of that clause. If there is
more than one suitable head, then several branches are added into the tree which corresponds to the disjunction
in the residualized program. An adaptation of CPD for the miniKanren programming language is described
in [13].

The most well-behaved strategy of local control in CPD for Prolog is deterministic unfolding [10]. An atom is
unfolded only if precisely one suitable clause head exists for it with the single exception: it is allowed to unfold
an atom non-deterministically once for one local control tree. This means that if a non-deterministic atom is
the leftmost within a conjunction, it is most likely to be unfolded and to introduce many new relation calls
within the conjunction. We believe this is the core problem with CPD which limits its power when applied to
miniKanren. The strategy of unfolding atoms from left to right is reasonable in the context of Prolog because it
mimics the way programs in Prolog execute. But it often leads to larger global control trees and, as a result,
bigger, less efficient programs. The evaluation result of a miniKanren program does not depend on the order of
atoms (relation calls) within a conjunction, thus we believe a better result can be achieved by selecting a relation
call which can restrict the number of branches in the tree. We describe our approach which implements this idea
in the next section.

3 CONSERVATIVE PARTIAL DEDUCTION

In this section, we describe a novel approach to relational programs specialization. This approach draws inspi-
ration from both conjunctive partial deduction and supercompilation. The aim was to create a specialization
algorithm which is simpler than conjunctive partial deduction and uses properties of miniKanren to improve
the performance of the input programs.
The algorithm pseudocode is shown in Fig. 1. For the sake of brevity and clarity, we provide functions

drive_disj and drive_conj which describe how to process disjunctions and conjunctions respectively. Driving
itself is a trivial combination of the functions provided (line 2).
A driving process creates a process tree, from which a residual program is later created. The process tree is

meant to mimic the execution of the input program. The nodes of the process tree include a configuration which
describes the state of program evaluation at some point. In our case a configuration is a conjunction of relation
calls. The substitution computed at each step is also stored in the tree node, although it is not included in the
configuration.

Hereafter, we consider all goals and relation bodies to be in canonical normal form—a disjunction of conjunctions
of either calls or unifications. Moreover, we assume all fresh variables to be introduced into the scope and all
unifications to be computed at each step. Those disjuncts in which unifications fail are removed. Each other
disjunct takes the form of a possibly empty conjunction of relation calls accompanied with a substitution computed
from unifications. Any miniKanren term can be trivially transformed into the described form. In Fig. 1 the
function normalize is assumed to perform term normalization. The code is omitted for brevity.

, Vol. 1, No. 1, Article 9. Publication date: August 2021.

9 • Verbitskaia, Berezun and Boulytchev.

1 ncpd goal = r e s i d u a l i z e ◦ drive ◦ normalize (goal)
2 drive = drive_disj ∪ drive_conj
3
4 drive_disj : : Disjunction → Process_Tree
5 drive_disj D@(c1 , . . . , cn) =

∨n

i=1
ti ← drive_conj (ci)

6
7 drive_conj : : (Conjunction , Subst itut ion) → Process_Tree
8 drive_conj ((r1 , . . . , rn) , subst) =
9 C@(r1 , . . . , rn) ← propagate_substitution subst on r1 , . . . , rn

10 case whist le (C) of
11 | instance (C’ , subst ’) ⇒ create_fold_node (C’ , subst ’)
12 | embedded_but_not_instance ⇒ create_stop_node (C , subst)
13 | otherwise ⇒
14 | | case heur i s t i ca l ly_se lect_a_cal l (r1 , . . . , rn) of
15 | | | Just r ⇒
16 | | | | t ← drive ◦ normalize ◦ unfold (r)
17 | | | | i f t r i v i a l ◦ l e a f s (t)
18 | | | | then
19 | | | | | C’ ← propagate_substitution (C \ r , extract_subst itut ion (t))
20 | | | | | dr ive C’ [r 7→ extract_cal l s (t)]
21 | | | | else
22 | | | | | t

∧
drive (C \ r , subst)

23 | | | Nothing ⇒
∧n

i=1
ti ← drive ◦ normalize ◦ unfold (ri)

Fig. 1. Conservative Partial Deduction Pseudo Code

There are several core ideas behind this algorithm. The first is to select an arbitrary relation to unfold, not
necessarily the leftmost which is safe. The second idea is to use a heuristic which decides if unfolding a relation
call can lead to discovery of contradictions between conjuncts which in turn leads to restriction of the answer set
at specialization-time (line 14; heuristically_select_a_call stands for heuristics combination, see section 3.2
for details). If those contradictions are found, then they are exposed by considering the conjunction as a whole
and replacing the selected relation call with the result of its unfolding thus joining the conjunction back together
instead of using split as in CPD (lines 15–22). Joining instead of splitting is whywe call our transformer conservative
partial deduction. Finally, if the heuristic fails to select a potentially good call, then the conjunction is split into
individual calls which are driven in isolation and are never joined (line 23).

When the heuristic selects a call to unfold (line 15), a process tree is constructed for the selected call in isolation
(line 16). The leaves of the computed tree are examined. If all leaves are either computed substitutions or are
instances of some relations accompanied with non-empty substitutions, then the leaves are collected and each
of them replaces the considered call in the root conjunction (lines 19–20). If the selected call does not suit the
criteria, the results of its unfolding are not propagated onto other relation calls within the conjunction, instead,
the next suitable call is selected (line 22). According to the denotational semantics of miniKanren it is safe to
compute individual conjuncts in any order, thus it is ok to drive any call and then propagate its results onto the
other calls.
This process creates branchings whenever a disjunction is examined (lines 4–5). At each step, we make sure

that we do not start driving a conjunction which we have already examined. To do this, we check if the current
conjunction is a renaming of any other configuration in the tree (line 11). If it is, then we fold the tree by creating
a special node which then is residualized into a call to the corresponding relation.

In this approach, we decided not to generalize in the same fashion as CPD or supercompilation. Our conjunctions
are always split into individual calls and are joined back together only if it meaningful. If the need for generalization

, Vol. 1, No. 1, Article 9. Publication date: August 2021.

An Empirical Study of Partial Deduction for miniKanren • 9

arises, i.e. homeomorphic embedding of conjunctions [3] is detected, then we immediately stop driving this
conjunction (line 12). When residualizing such a conjunction, we just generate a conjunction of calls to the input
program before specialization.

3.1 Unfolding

Unfolding in our case is done by substitution of some relation call by its body with simultaneous normalization
and computation of unifications. The unfolding itself is straightforward however it is not always clear what to
unfold and when to stop unfolding. Unfolding in the specialization of functional programming languages, as well
as inlining in imperative languages, is usually considered to be safe from the residual program efficiency point of
view. It may only lead to code explosion or code duplication which is mostly left to a target program compiler
optimization or even is out of consideration at all if a specializer is considered as a standalone tool [7].
Unfortunately, this is not the case for the specialization of a relational programming language. Unlike in

functional and imperative languages, in logic and relational programming languages unfolding may easily affect
the target program’s efficiency [11]. Unfolding too much may create extra unifications, which is by itself a costly
operation, or even introduce duplicated computations by propagating the unfolding’s results onto neighbouring
conjuncts.

There is a fine edge between too much unfolding and not enough unfolding. The former is maybe even worse
than the latter. We believe that the following heuristic provides a reasonable approach to unfolding control.

3.2 Less-Branching Heuristic

This heuristic is aimed at selecting a relation call within a conjunction which is both safe to unfold and may lead
to discovering contradictions within the conjunction. An unsafe unfolding leads to an uncontrollable increase
in the number of relation calls in a conjunction. It is best to first unfold those relation calls which can be fully
computed up to substitutions.
We deem every static (non-recursive) conjunct to be safe because they never lead to growth in the number

of conjunctions. Those calls which unfold deterministically, meaning there is only one disjunct in the unfolded
relation, are also considered to be safe.

Those relation calls which are neither static nor deterministic are examined with what we call the less-branching
heuristic. It identifies the case when the unfolded relation contains fewer disjuncts than it could possibly have.
This means that we found some contradiction, some computations were gotten rid of, and thus the answer set was
restricted, which is desirable when unfolding. To compute this heuristic we precompute the maximum possible
number of disjuncts in each relation and compare this number with the number of disjuncts when unfolding
a concrete relation call. The maximum number of disjuncts is computed by unfolding the body of the relation in
which all relation calls were replaced by a unification which always succeeds.

1 heur i s t i ca l ly_se lect_a_cal l : : Conjunction → Maybe Call
2 heur i s t i ca l ly_se lect_a_cal l C = find h e u r i s t i c C
3
4 h e u r i s t i c : : Call → Bool
5 h e u r i s t i c r = i s S t a t i c r | | i sDetermin i s t i c r | | isLessBranching r

Fig. 2. Heuristic selection pseudocode

The pseudocode describing our heuristic is shown in Fig. 2. Selecting a good relation call can fail (line 1). The
implementation works such that we first select those relation calls which are static, and only if there are none, we
proceed to consider deterministic unfoldings and then we search for those which are less branching. We believe
this heuristic provides a good balance in unfolding.

, Vol. 1, No. 1, Article 9. Publication date: August 2021.

9 • Verbitskaia, Berezun and Boulytchev.

4 EVALUATION

We implemented the new conservative partial deduction2 and compared it with the CPD adaptation for miniKan-
ren of [13]. We have also employed the branching heuristic instead of the deterministic unfolding in the CPD to
check whether it can improve the quality of the specialization.
We used the following programs to test the specializers.
• Two implementations of an evaluator of logic formulas.
• A program to compute a unifier of two terms.
• A program to search for paths of a specific length in a graph.

The last two relations are described in [13] thus we will not describe them here.

4.1 Evaluator of Logic Formulas

The relation evalo describes an evaluation of a subset of first-order logic formulas in a given substitution. It
has 3 arguments. The first argument is a list of boolean values which serves as a substitution. The i-th value of
the substitution is the value of the i-th variable. The second argument is a formula with the following abstract
syntax. A formula is either a variable represented with a Peano number, a negation of a formula, a conjunction
of two formulas or a disjunction of two formulas. The third argument is the value of the formula in the given
substitution.

All examples of miniKanren relations in this paper are written in OCanren3 syntax. We specialize the evalo
relation to synthesize formulas which evaluate to ↑true4. To do so, we run the specializer for the goal with the
last argument fixed to ↑true, while the first two arguments remain free variables. Depending on the way the
evalo is implemented, different specializers generate significantly different residual programs.

4.1.1 The Order of Relation Calls. One possible implementation of the evaluator in the syntax of OCanren is
presented in Listing 1. Here the relation elemo subst v res unifies res with the value of the variable v in the
list subst. The relations ando , oro , and noto encode corresponding boolean operations.

let rec evalo subst fm res = conde [
fresh (x y z v w) (

(fm ≡ var v ∧ elemo subst v res) ;
(fm ≡ conj x y ∧ evalo st x v ∧ evalo st y w ∧ ando v w res) ;
(fm ≡ disj x y ∧ evalo st x v ∧ evalo st y w ∧ oro v w res) ;
(fm ≡ neg x ∧ evalo st x v ∧ noto v res))]

Listing 1. Evaluator of formulas with boolean operation last

Note, that the calls to boolean relations ando , oro , and noto are placed last within each conjunction. This poses
a challenge to the CPD-based specializers. Conjunctive partial deduction unfolds relation calls from left to right,
so when specializing this relation for running backwards (i.e. considering the goal evalo subst fm ↑true), it
fails to propagate the direction data onto recursive calls of evalo . Knowing that res is ↑true, we can conclude
that in the call ando v w res variables v and w have to be ↑true as well. There are three possible options for
these variables in the call oro v w res and one for the call noto . These variables are used in recursive calls of
2The repository of the miniKanren specialization project: https://github.com/kajigor/uKanren_transformations. Access date: 17.07.2020.
3OCanren: statically typedminiKanren embedding inOCaml. The repository of the project: https://github.com/JetBrains-Research/OCanren.
Access date: 17.07.2020.
4An arrow lifts ordinary values to the logic domain.

, Vol. 1, No. 1, Article 9. Publication date: August 2021.

https://github.com/kajigor/uKanren_transformations
https://github.com/JetBrains-Research/OCanren

An Empirical Study of Partial Deduction for miniKanren • 9

evalo and thus restrict the result of driving them. CPD fails to recognize this, and thus unfolds recursive calls of
evalo applied to fresh variables. It leads to over-unfolding, big residual programs and poor performance.

The conservative partial deduction first unfolds those calls which are selected with the heuristic. Since exploring
boolean operations makes more sense, they are unfolded before recursive calls of evalo . The way conservative
partial deduction treats this program is the same as it treats the other implementation in which boolean operations
are moved to the left, as shown in Listing 2. This program is easier for CPD to transform which demonstrates
how unequal the behaviour of CPD for similar programs is.

let rec evalo subst fm res = conde [
fresh (x y z v w) (

(fm ≡ var v ∧ elemo subst v res) ;
(fm ≡ conj x y ∧ ando v w res ∧ evalo st x v ∧ evalo st y w) ;
(fm ≡ disj x y ∧ oro v w res ∧ evalo st x v ∧ evalo st y w) ;
(fm ≡ neg x ∧ noto v res ∧ evalo st x v))]

Listing 2. Evaluator of formulas with boolean operation second

4.1.2 Unfolding of Complex Relations. Depending on the way a relation is implemented, it may take a different
number of driving steps to reach the point when any useful information is derived through its unfolding. Partial
deduction tries to unfold every relation call unless it is unsafe, but not all relation calls serve to restrict the search
space and thus not every relation call should be unfolded. In the implementation of evalo boolean operations
can effectively restrict variables within the conjunctions and should be unfolded until they do. But depending on
the way boolean operations are implemented, different number of driving steps should be performed for that.
The simplest way to implement these relations is with a table as demonstrated with the implementation of noto
in Listing 3. It is enough to unfold such relation calls once to derive useful information about variables.

let noto x y = conde [
(x ≡ ↑true ∧ y ≡ ↑false ;
x ≡ ↑false ∧ y ≡ ↑true)]

Listing 3. Implementation of boolean not as a table

The other way to implement boolean operations is via one basic boolean relation such as nando which has, in
turn, a table-based implementation (see Listing 4). It will take several sequential unfoldings to derive that variables
v and w should be ↑true when considering a call ando v w ↑true implemented via a basic relation. Conservative
partial deduction drives the selected call until it derives useful substitutions for the variables involved. CPD with
deterministic unfolding may fail to derive useful substitutions.

4.2 Evaluation Results

In our study, we considered two implementations of evalo , one we call plain and the other — last, and compared
how specializers behave on them. The plain relation uses table-based boolean operations and places them further
to the left in each conjunction. The relation last employs boolean operations implemented via nando and places
them at the end of each conjunction. These two programs are complete opposites from the standpoint of CPD.
We measured the time necessary to generate 1000 formulas over two variables which evaluate to ↑true. We

compared the results of specialization of the goal evalo subst fm ↑true by our implementation of CPD, the

, Vol. 1, No. 1, Article 9. Publication date: August 2021.

9 • Verbitskaia, Berezun and Boulytchev.

let noto x y = nando x x y

let oro x y z = nando x x xx ∧ nando y y yy ∧ nando xx yy z

let ando x y z = nando x y xy ∧ nando xy xy z

let nando a b c = conde [
(a ≡ ↑false ∧ b ≡ ↑false ∧ c ≡ ↑true) ;
(a ≡ ↑false ∧ b ≡ ↑true ∧ c ≡ ↑true) ;
(a ≡ ↑true ∧ b ≡ ↑false ∧ c ≡ ↑true) ;
(a ≡ ↑true ∧ b ≡ ↑true ∧ c ≡ ↑false)]

Listing 4. Implementation of boolean operations via nand

last plain unify isPath
Original 1.06s 1.84s — —
CPD — 1.13s 14.12s 3.62s

ConsPD 0.93s 0.99s 0.96s 2.51s
Branching 3.11s 7.53s 3.53s 0.54s

Table 1. Evaluation results

new conservative partial deduction, and the CPD modified with the less-branching heuristic. Our evaluation
confirmed that CPD behaves very differently on these two implementations of the same relation. CPD improves
the execution time of the plain relation, however CPD performs too much unfolding of the last relation which
is why the specialized relation last fails to terminate in under 10 seconds. The execution time of two programs
generated with the novel conservative partial deduction is very similar and it is a little bit better than the best by
CPD. CPD with the less-branching heuristic constructs residual programs of different quality, worsening the
execution time for both implementations. The results are shown in table 1.

Besides the evaluator of logic formulas we also run the transformers on the relation unify, which searches for
a unifier of two terms, and the relation isPath specialized to search for paths in a graph. These two relations are
described in paper [13] so we will not go into too many details here.

The unify relation was executed to find a unifier of the terms f (X ,X ,д(Z , t)) and f (д(p,L),Y ,Y). The original
miniKanren program fails to terminate on this goal in 30 seconds. On this example, the most performant is the
program generated by conservative partial deduction (0.96 seconds).

The last test executed the isPath relation to search for 5 paths in a graph with 20 vertices and 30 edges. The
original miniKanren program fails to terminate on this goal in 30 seconds. On this program, CPD with branching
heuristic showed much better transformation result than both CPD and conservative partial deduction, although
all specialized versions show improvement as compared with the original relation.

All evaluation results are presented in the table 1. Each column corresponds to the relation being run as described
above. The row marked “Original” contains the execution time of the original miniKanren relation before
specialization, “CPD” and “ConsPD” correspond to conjunctive and conservative partial deduction respectively
while “Branching” is for the CPD modified with the branching heuristic.

, Vol. 1, No. 1, Article 9. Publication date: August 2021.

An Empirical Study of Partial Deduction for miniKanren • 9

5 CONCLUSION

In this paper, we discussed some issues which arise in partial deduction of a relational programming language,
miniKanren. We presented a novel approach to partial deduction which uses less-branching heuristic to select
the most suitable relation call to unfold at each step of driving. We compared this approach to the earlier
implementation of conjunctive partial deduction and the implementation of CPD equipped with the new less-
branching heuristic.
The conservative partial deduction improved the execution time of all relations while the implementations

of CPD degraded the performance of some of them. However, CPD equipped with the less-branching heuristic
improved the execution time of one relation the most compared with the other specializers. We conclude that
there is still no one good technique which definitely speeds up every relational program. More research is needed
to develop models to predict performance of relations, these models can further be used in specialization.

REFERENCES

[1] Maximilian C. Bolingbroke and Simon L. Peyton Jones. 2010. Supercompilation by evaluation. In Proceedings of the 3rd ACM SIGPLAN
Symposium on Haskell, Haskell 2010, Baltimore, MD, USA, 30 September 2010, Jeremy Gibbons (Ed.). ACM, 135–146. https://doi.org/10.
1145/1863523.1863540

[2] Mikhail A. Bulyonkov. 1984. Polyvariant Mixed Computation for Analyzer Programs. Acta Inf. 21 (1984), 473–484. https://doi.org/10.
1007/BF00271642

[3] Danny De Schreye, Robert Glück, Jesper Jørgensen, Michael Leuschel, Bern Martens, and Morten Heine Sørensen. 1999. Conjunctive
partial deduction: Foundations, control, algorithms, and experiments. The Journal of Logic Programming 41, 2-3 (1999), 231–277.

[4] Robert Glück andMorten Heine Sørensen. 1994. Partial deduction and driving are equivalent. In International Symposium on Programming
Language Implementation and Logic Programming. Springer, 165–181.

[5] Geoff W Hamilton. 2007. Distillation: extracting the essence of programs. In Proceedings of the 2007 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation. 61–70.

[6] G. Higman. 1952. Ordering by divisibility in abstract algebras. In Proceedings of the London Mathematical Society, Vol. 2. 326–336.
[7] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial evaluation and automatic program generation. Prentice Hall.
[8] Peter A. Jonsson and Johan Nordlander. 2011. Taming code explosion in supercompilation. In Proceedings of the 2011 ACM SIGPLAN

Workshop on Partial Evaluation and Program Manipulation, PEPM 2011, Austin, TX, USA, January 24-25, 2011, Siau-Cheng Khoo and
Jeremy G. Siek (Eds.). ACM, 33–42. https://doi.org/10.1145/1929501.1929507

[9] J. B. Kruskal. 1960. Well-quasi ordering, the tree theorem, and Vazsonyi’s conjecture. Trans. Amer. Math. Soc. 95, 210–225.
[10] Michael Leuschel. 1997. Advanced techniques for logic program specialisation. (1997).
[11] Michael Leuschel and Maurice Bruynooghe. 2002. Logic program specialisation through partial deduction: Control issues. Theory and

Practice of Logic Programming 2, 4-5 (2002), 461–515.
[12] John W. Lloyd and John C Shepherdson. 1991. Partial evaluation in logic programming. The Journal of Logic Programming 11, 3-4 (1991),

217–242.
[13] Petr Lozov, Ekaterina Verbitskaia, and Dmitry Boulytchev. 2019. Relational Interpreters for Search Problems. In miniKanren and

Relational Programming Workshop. 43.
[14] Neil Mitchell and Colin Runciman. 2007. A Supercompiler for Core Haskell. In Implementation and Application of Functional Languages,

19th International Workshop, IFL 2007, Freiburg, Germany, September 27-29, 2007. Revised Selected Papers (Lecture Notes in Computer
Science, Vol. 5083), Olaf Chitil, Zoltán Horváth, and Viktória Zsók (Eds.). Springer, 147–164. https://doi.org/10.1007/978-3-540-85373-2_9

[15] Morten Heine Soerensen, Robert Glück, and Neil D. Jones. 1996. A positive supercompiler. Journal of functional programming 6, 6 (1996),
811–838.

, Vol. 1, No. 1, Article 9. Publication date: August 2021.

https://doi.org/10.1145/1863523.1863540
https://doi.org/10.1145/1863523.1863540
https://doi.org/10.1007/BF00271642
https://doi.org/10.1007/BF00271642
https://doi.org/10.1145/1929501.1929507
https://doi.org/10.1007/978-3-540-85373-2_9

	Abstract
	1 Introduction
	2 Related Work
	3 Conservative Partial Deduction
	3.1 Unfolding
	3.2 Less-Branching Heuristic

	4 Evaluation
	4.1 Evaluator of Logic Formulas
	4.2 Evaluation Results

	5 Conclusion
	References

