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Defining a central processing unit relationally using miniKanren is proposed as a new approach for realizing assembly code
diversification. Software diversity has long been championed as a means of protecting digital ecosystems from widespread
failures due to cyberattacks and faults, but is often difficult to achieve in practice. Using relational programming to simulate a
processor allows large-scale automatic synthesis of assembly-level code. Early experiments with the technique indicate that
such synthesis might lead to better automation of code diversification by breaking the synthesis problem into manageable
chunks. An early prototype is presented, with some sample synthesis tasks and discussion of possible future applications.
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1 INTRODUCTION
Software diversity has long been recognized as valuable for protecting digital ecosystems fromwidespread failures
due to cyberattacks and faults [Cohen 1993]. Higher diversity of software implementations reduces the likelihood
that a single, common flaw pervades all its deployments, and therefore that a single attack can compromise all
members of the ecosystem or affect them all in the same way. Unfortunately, most software ecosystems today
remain highly monocultural—all deployments of a given software product for a given architecture are almost
identical, save for minute differences. This homogeneity often allows individual, low-cost cyberattacks to have a
devastating impact on large numbers of computer systems. For example, the 2015 Stagefright 2.0 vulnerability
left nearly all Android devices susceptible to remote compromise due to almost identical multimedia library
implementations being used by nearly all apps on all the devices [Peters 2015].
One reason why software monoculture continues to abound despite its brittleness against attack is the

uniformity of most present-day tools for developing software products. Compilers are typically designed to solve
an optimization problem that translates a given source program into a single, efficient, equivalently behaved object
program. Compiler design goals therefore typically include semantic transparency (behavioral preservation),
runtime efficiency, and space efficiency, but not diversity. The source semantics of mainstream imperative
languages (e.g., C/C++), the optimization stages of their compilers, and their backend code generation algorithms
are all designed to search for a single, good solution to this optimization problem.
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Our research seeks to shift the compiler optimization problem to pursue diversity as a design goal of software
development. In particular, a diversifying software development methodology should attempt to yield a maximally
dissimilar collection of object code implementations that are all semantically transparent to the original source
code and that meet a certain baseline efficiency.

Although a few code diversification strategies have attained widespread deployment in practice, most provide
only limited forms of diversity that continue to leave ecosystems vulnerable to exploitation. For example, Address
Space Layout Randomization (ASLR) diversifies programs by randomly choosing the base addresses of libraries
at load-time. While this does help mitigate some attacks, the resulting diversity is low, leaving the software
vulnerable to derandomization attacks [Shacham et al. 2004]. We believe that changing implementations in a more
fundamental way, such as modifying how values are computed, will protect against broader classes of attacks.
Historically, however, this type of diversity has been expensive to obtain and difficult to achieve in an auto-

mated fashion. Prior work [Lundquist et al. 2016] proposes merging the fields of artificial diversity of software
with that of program synthesis, leveraging the natural diversity of search-style problems in order to create a
plethora of program implementations. Because they spring from search problems, these implementations could
be fundamentally different ways of solving a given computational problem.

One approach to program synthesis makes use of miniKanren1 [Byrd 2009], a family of logic languages typically
implemented as an embedded Domain-Specific Language (DSL). Since it is a relational language, miniKanren
programmers write specifications that relate values, and users submit queries that yield sets of values within the
relation. Since any value can queried by the system, values in computations that are traditionally thought of as
“inputs” or “outputs” need not be. Querying for “inputs” that relate to a specified “output” effectively reverses the
computation.

Prior work [Byrd et al. 2017, 2012] has proposed realizing program synthesis in miniKanren by implementing
the relational specification of an interpreter that relates input code to the output values it produces. Reversing the
computation by querying for inputs from given outputs then produces possible code that produces the desired
output values.

Program synthesis in miniKanren seems particularly well suited to the goal of code diversity givenminiKanren’s
natural ability to easily produce multiple answers for a query. The user simply specifies how many answers (at a
maximum) the system is to search for, and a list of results is returned.
In the interest of being source code-agnostic with our diversification efforts, we would like to synthesize

programs at the assembly level. This potentially has the advantages of breaking the synthesis problem into
manageable chunks, as well as allowing existing code (of any origin) to be diversified in a largely automated
fashion.

Since we wish to achieve program diversity at the assembly level, we propose writing a relational specification
of a central processing unit. This miniKanren program interprets assembly code by relating that code to the
states of the processor before and after code execution. A user can then query for assembly code that produces a
desired output state.

2 MODES OF OPERATION
We envision the following ways of using an assembly language synthesis system, such as our miniKanren
prototype:

2.1 For Diversification
Our main goal is to explore automated diversification of assembly-level code. Potential approaches include the
following:

1See http://minikanren.org

http://minikanren.org
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• Use of code sketches:
A standard approach to program synthesis is that of the program sketch [Solar-Lezama 2008, 2009]: a partial
program with holes to be filled with synthesized code. In a logic programming environment, a sketch is a
partial program with portions (here instruction mnemonics, instruction arguments, etc.) represented by
logic variables. Those variables are then queried using a run command to determine possible values. To
control which output is being computed, a sketch must also include a formal specification of what is to be
computed. In assembly diversification, these specifications are constraints dictating the possible processor
states after a computation runs. (We use sketches in this paper.)
Constraints collectively define correctness of synthesized answers. Correct synthesis algorithms yield
only answers that are correct with respect to the constraints. For code diversification, constraints must
therefore also define what is meant by program equivalence. For example, a user may decide to specify result
values for processor status flags, or leave them unconstrained. The latter option broadens the definition
of equivalence to include relations on processor states. For example, diversification might be required to
preserve register and memory values but be permitted to vary status flag values.
When diversifying existing code, either the program to be diversified already has a formal (mathematical)
specification, or (more commonly) there will a priori be no formal notion of correctness. In the ideal
former case, we need only convert the specification into miniKanren constraints. In the latter case, quality
assurance and testing processes must be applied to check program correctness or equivalence; however,
for diversity to be tractable, this assurance process should be (semi-)automated to easily apply it to the
multitude of variants generated.
• Basic blocks bracketed by control flow instructions:
Generating proper control-flow using program synthesis is known to be a hard problem [Solar-Lezama
2008]. To avoid this, sketches can explicitly specify most or all control-flow transfer instructions [Solar-
Lezama 2008]. Instructions in the basic block(s) between control-flow transfers are synthesized in entirety
or in part. Program constraints include loop invariants to dictate what is synthesized. (The GCD examples
in the following section illustrate this approach.)
• Use of effect traces:
In addition to dividing code up into basic blocks, another approach is to generate code based on a known
effect trace, synthesizing portions between calls to other functions, system routines, or other side effects not
otherwise modeled by our processor relation. The format and construction of arguments to these external
routines are determined by constraints provided in the sketch. Since trace equivalence is a common way to
define program equivalence, this approach provides an intuitive starting point for solving the equivalence
problem mentioned above.
• Diversification of existing code:
One of our primary goals for this project is the automated diversification of existing code. To achieve this,
processor states could be generated by running existing assembly code forwards in our system. Enhanced
by constraints describing known properties of how the code should function, these processor states become
the end goals for new code to satisfy.
• Gadget-oriented program composition:
A gadget can be defined as any arbitrary string of assembly language instructions, usually one found
in pre-existing code. As shown in prior work [Lundquist et al. 2016; Mohan and Hamlen 2012] (and as
shown by Return-Oriented Programming in general [Schwartz et al. 2011]), programs can be constructed by
stringing chains of gadgets together in an order determined by the synthesis engine as a means of reaching
a particular goal. Return-Oriented Programming (ROP) is an exploit technique that repurposes gadgets
found in existing benign code to implement attack payloads. While gadget-oriented programming was
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originally used for malicious purposes, we speculate that this technique could be adapted for more general
synthesis tasks.

The overall theme of the techniques described above is that of breaking the problem of synthesis into small,
manageable chunks at a low level. Rather than trying to synthesize an entire program at once, a program is
broken down into sub-pieces, which are then synthesized. This avoids traditional problems associated with
synthesizing large or complex code fragments, and mitigates state-space explosion.

2.2 For Use by a Compiler
Since programming using processor states and constraint sets is likely to be difficult, we envision this system
as a target of higher level tools, such as compilers or interpreters. Replacing the back-end code generation
of a compiler with a synthesis system allows for automatic diversification while keeping programming tasks
manageable. Compilers are potentially in a unique position to know what constraints must be preserved from
higher-level source in the generated assembly. Further, allowing compilers and other code-generation tools to
programmatically break the result into known intermediate states allows for smaller and more frequent synthesis
tasks, once again keeping with the theme of reducing synthesis problems into smaller sub-problems. Sub-problems
can be divided at whatever level is appropriate for the tool based on its knowledge and analysis of the code being
generated, or based on what size tasks the synthesis engine is capable of handling efficiently.
We plan to use our system to explore each of the above approaches in future work.

3 IMPLEMENTATION
To explore assembly language synthesis, we have developed a prototype relational assembly interpreter in
miniKanren.2 Our prototype uses a subset of Intel x86 assembly language instructions with the limited set of
32-bit general purpose registers available for that architecture. The implementation uses a modified version of
faster-miniKanren3 written in Racket.
A full scale system must support enough instructions and processor features to synthesize programs that

work; but like existing compiler back-ends (which emit only a subset of the available instructions), this does not
necessitate supporting the entire instruction set architecture (ISA). Supporting more of the ISA allows for more
diversity in the resulting programs, potentially at the cost of synthesis time. However, prior work [Mohan and
Hamlen 2012] has found that only a small portion of the architecture is needed to achieve high code diversity.

3.1 The x86o Relation
Our processor relation x86o relates assembly code, an input processor state, and an output processor state.
Processor state is modeled as a set of association lists, one mapping registers to values and another mapping
memory locations to values. The memory mapping is a partial function, only containing those values that have
been updated by the program. Addresses read from an uninitialized address return a default value, typically 0.
The interpreter models assembly code as a list of instructions, using a fall-through approach to execute (or

synthesize) a basic block. Since we do not yet represent code addresses in our model, execution always necessarily
continues to the subsequent instruction in the list. Each instruction is a list containing an instruction mnemonic
and the appropriate number of operands for the instruction. Each operand describes a register, an immediate
value, or a memory address.

2Code is available for download at https://www.utdallas.edu/~hamlen/lundquist-miniKanren19.zip or https://www.utdallas.edu/~hamlen/
lundquist-miniKanren19.tar.gz.
3Obtained from https://github.com/gregr/tutorial-relational-interpreters. This version contains modifications by Greg Rosenblatt to
speed up the evalo relational interpreter. The original faster-miniKanren can be obtained from https://github.com/michaelballantyne/
faster-miniKanren/blob/master/README.md.

https://www.utdallas.edu/~hamlen/lundquist-miniKanren19.zip
https://www.utdallas.edu/~hamlen/lundquist-miniKanren19.tar.gz
https://www.utdallas.edu/~hamlen/lundquist-miniKanren19.tar.gz
https://github.com/gregr/tutorial-relational-interpreters
https://github.com/michaelballantyne/faster-miniKanren/blob/master/README.md
https://github.com/michaelballantyne/faster-miniKanren/blob/master/README.md
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The interpreter calls sub-relations to decode arguments (which relate operands to their values with respect to
some processor state) and then interprets the instruction by operating on those values and creating an updated
processor state. A fragment of the relation with a few instructions is shown below:

;; The x86 processor relation.
(define (x86o code rstore new-rstore)

(conde
[(≡ '() code) (≡ rstore new-rstore)]

[(fresh (opcode arglist morecode op1 op2 res rstore1)
(≡ code `((,opcode . ,arglist) . ,morecode))
(conde

;; add
[(≡ opcode 'add)
(decode-2argso arglist op1 op2 rstore)
(pluso op1 op2 res)
(update-argo arglist res rstore rstore1)
(x86o morecode rstore1 new-rstore)]

. . .
;; div
;; uses implicit arguments -
;; dividend is edx:eax,
;; divisor is op1,
;; destination (result quotient) is eax,
;; (result) remainder is edx
[(≡ opcode 'div)
(decode-1argo arglist op1 rstore)
(fresh (edx eax n rem rstore2)
(lookupo 'R_EDX rstore eax)
(lookupo 'R_EAX rstore edx)
(appendo eax edx n) ; n=dividend: eax=low order bits, edx=high order bits
(divo n op1 res rem)
(updateo 'R_EAX res rstore rstore1)
(updateo 'R_EDX rem rstore1 rstore2)
(x86o morecode rstore2 new-rstore))]

. . .
;; xor
[(≡ opcode 'xor)
(decode-2argso arglist op1 op2 rstore)
(xoro op1 op2 res)
(update-argo arglist res rstore rstore1)
(x86o morecode rstore1 new-rstore)]

. . .
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Numeric values in our system are represented as Oleg numerals—little-endian lists of binary digits that encode
the base-2 representation of the number. Most arithmetic operations are the definitions4 found in The Reasoned
Schemer [Friedman et al. 2018], with a few of our own added to implement missing operators (e.g., logical
operations) needed for the instructions we’ve included. For example, here is our implementation of integer
division and remainder:

; integer division with remainder
(define (divo a b q r)

(conde
[(≡ q '()) (≡ r a) (<lo a b)]
[(fresh (p)

(<=lo b a)
(<lo r b)
(pluso p r a)
(*o b q p))]))

3.2 ExampleQueries
3.2.1 Synthesis 1: Generating Some Assembly. Our first example interaction demonstrates a query for generating
lots of assembly code quickly. The goal of each synthesized program is to place the result value 1875 (Oleg
numeral (1 1 0 0 1 0 1 0 1 1 1)) into register EAX.
We begin by providing the following assembly program sketch:

mov ECX ?x
mov EDX ?y
mov EAX ?p
mov EBX ?q
mov EDI ?s
mov ESI ?t

?д ECX ESI
?f EDX EDI
?d EAX ECX
?e EBX EDX
?c EAX EBX

The question marks denote holes to be filled in by the synthesizer, subscripted with the name of the logic
variable used to denote the hole. The first six instructions denote mov instructions with a particular destination
operand (one for each general-purpose register) and a hole to be filled in for the source operand. The remaining
five instructions give concrete destination and source operands but leave the choice of instruction open to be
synthesized.

Constraints are then added to further limit what will be synthesized. The first set of constraints prevent any of
the final instructions from being additional mov instructions. The second set prevents some source operands from

4Obtained from https://github.com/miniKanren/CodeFromTheReasonedSchemer2ndEd.

https://github.com/miniKanren/CodeFromTheReasonedSchemer2ndEd
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being the same as some of the other source operands. The third set of constraints disallow source operand holes
from containing 1875, which prevents the goal value from being moved directly into a register. Finally, source
operands must be positive (non-zero).

We use our processor relation to relate the sketch code, an initial empty processor state, and a final processor
state. Constraining this final state by the value in EAX forces our desired goal to be met. We then query for the
fully synthesized code (in variable v1) and the resulting processor state (in variable z).
For our queries, we make use of Racket’s time operator, which reports (in milliseconds) CPU time, real time,

and garbage collection time spent for expression evaluation. The full query and first 2 (of 200) results are as
follows:

> (time
(run 200 (v1 z)
(fresh (d x p e q y c s t f g)

(≡ v1 `((mov R_ECX ,x)
(mov R_EDX ,y)
(mov R_EAX ,p)
(mov R_EBX ,q)
(mov R_EDI ,s)
(mov R_ESI ,t)

(,g R_ECX R_ESI)
(,f R_EDX R_EDI)
(,d R_EAX R_ECX)
(,e R_EBX R_EDX)
(,c R_EAX R_EBX)))

(. c 'mov) (. d 'mov) (. e 'mov) (. f 'mov) (. g 'mov)
(. p q) (. x q) (. y p) (. y q) (. x p) (. x y)
(. x '(1 1 0 0 1 0 1 0 1 1 1))
(. y '(1 1 0 0 1 0 1 0 1 1 1))
(. q '(1 1 0 0 1 0 1 0 1 1 1))
(. p '(1 1 0 0 1 0 1 0 1 1 1))
(. s '(1 1 0 0 1 0 1 0 1 1 1))
(. t '(1 1 0 0 1 0 1 0 1 1 1))
(poso x) (poso y) (poso p) (poso q) (poso t) (poso s)
(x86o v1 initial-store z)
(lookupo 'R_EAX z '(1 1 0 0 1 0 1 0 1 1 1))

)))
cpu time: 21109 real time: 21481 gc time: 9204
'(((((mov R_ECX (_.0 . _.1))

(mov R_EDX (_.2 . _.3))
(mov R_EAX (1))
(mov R_EBX (0 1 0 0 1 0 1 0 1 1 1))
(mov R_EDI (_.2 . _.3))
(mov R_ESI (_.0 . _.1))
(sub R_ECX R_ESI)
(sub R_EDX R_EDI)
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(add R_EAX R_ECX)
(add R_EBX R_EDX)
(add R_EAX R_EBX))
((R_EAX 1 1 0 0 1 0 1 0 1 1 1) (R_EBX 0 1 0 0 1 0 1 0 1 1 1) (R_ECX) (R_EDX)
(R_EDI _.2 . _.3) (R_ESI _.0 . _.1)))

(=/=
((_.0 0) (_.1 (1 0 0 1 0 1 0 1 1 1)))
((_.0 1) (_.1 (1 0 0 1 0 1 0 1 1 1)))
((_.0 1) (_.1 ()))
((_.0 _.2) (_.1 _.3))
((_.2 0) (_.3 (1 0 0 1 0 1 0 1 1 1)))
((_.2 1) (_.3 (1 0 0 1 0 1 0 1 1 1)))
((_.2 1) (_.3 ()))))

((((mov R_ECX (_.0 . _.1))
(mov R_EDX (_.2 . _.3))
(mov R_EAX (0 1 0 0 1 0 1 0 1 1 1))
(mov R_EBX (1))
(mov R_EDI (_.2 . _.3))
(mov R_ESI (_.0 . _.1))
(sub R_ECX R_ESI)
(sub R_EDX R_EDI)
(add R_EAX R_ECX)
(add R_EBX R_EDX)
(add R_EAX R_EBX))

((R_EAX 1 1 0 0 1 0 1 0 1 1 1) (R_EBX 1) (R_ECX) (R_EDX) (R_EDI _.2 . _.3) (R_ESI _.0 . _.1)))
(=/=
((_.0 0) (_.1 (1 0 0 1 0 1 0 1 1 1)))
((_.0 1) (_.1 (1 0 0 1 0 1 0 1 1 1)))
((_.0 1) (_.1 ()))
((_.0 _.2) (_.1 _.3))
((_.2 0) (_.3 (1 0 0 1 0 1 0 1 1 1)))
((_.2 1) (_.3 (1 0 0 1 0 1 0 1 1 1)))
((_.2 1) (_.3 ()))))

. . .

3.2.2 Synthesis 2: Reverse ALU. Next we give an example of Angelic Execution—determining which sets of inputs
successfully result in a particular output [Bodik et al. 2010; Chandra et al. 2011]. Here the output value 65,535
must be assigned to register EAX after computing the following assembly fragment:

mul EAX EBX
or ECX EDX
add ESI EDI
dec EAX
xor ESI ECX
inc ECX
xor EAX ECX
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Each synthesized output contains a set of possible positive input values, one for each of the six general-purpose
registers. Each input set successfully results in the desired output.
The full query and first 5 (of 200) results are shown below:

> (time
(run 200 (v1 v2 v3 v4 v5 v6)
(fresh (a b c x y z str)
(poso a) (poso b) (poso c) (poso x) (poso y) (poso z)
(x86o `((mov R_EAX ,x)

(mov R_EBX ,y)
(mov R_ECX ,z)
(mov R_EDX ,a)
(mov R_ESI ,b)
(mov R_EDI ,c)
(mul R_EAX R_EBX)
(or R_ECX R_EDX)
(add R_ESI R_EDI)
(dec R_EAX)
(xor R_ESI R_ECX)
(inc R_ECX)
(xor R_EAX R_ECX))

initial-store
str)

(lookupo 'R_EAX str '(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1))
(≡ `(R_EAX ,x) v1)
(≡ `(R_EBX ,y) v2)
(≡ `(R_ECX ,z) v3)
(≡ `(R_EDX ,a) v4)
(≡ `(R_ESI ,b) v5)
(≡ `(R_EDI ,c) v6)

)))
cpu time: 14062 real time: 14129 gc time: 4384
'(((R_EAX (0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)) (R_EBX (1)) (R_ECX (1))

(R_EDX (1)) (R_ESI (1)) (R_EDI (1)))
((R_EAX (1)) (R_EBX (0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)) (R_ECX (1))
(R_EDX (1)) (R_ESI (1)) (R_EDI (1)))
((R_EAX (0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)) (R_EBX (1)) (R_ECX (1))
(R_EDX (1)) (R_ESI (1)) (R_EDI (0 _.0 . _.1)))
((R_EAX (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)) (R_EBX (0 1)) (R_ECX (1))
(R_EDX (1)) (R_ESI (1)) (R_EDI (1)))
((R_EAX (0 1)) (R_EBX (1)) (R_ECX (1))
(R_EDX (0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1)) (R_ESI (1)) (R_EDI (1)))

. . .
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3.2.3 Specifying Loop Constraints: Euclid’s GCD Algorithm. For our final example, we use a slightly higher-level
code fragment to demonstrate how we handle looping or stitching together multiple code blocks. Our prototype
currently only handles straight-line code with no jumps. To specify code with loops or more complicated control
flow, one can specify how the blocks are to be sequenced using miniKanren.

As our example, we use Euclid’s algorithm for finding the Greatest Common Divisor (GCD) of two integers a
and b. Recall that the algorithm proceeds as follows:

(1) Find the remainder r when dividing a and b. (Equivalently, find integers q and r such that a = qb + r ).
(2) If r = 0 then b already divides both a and b, and is the largest integer that divides both a and b; return b.
(3) Otherwise, any number that divides a and b must also divide b and r . Repeat from step (1) to find the GCD

of b and r .

To implement this algorithm, first we adopt the convention that the values for a and b are held in registers EAX
and EBX, respectively. We then write a miniKanren relation gcd_testero to run the loop. Given an assembly
code body and input values, the code is run in a processor environment with values in their proper registers. It
then checks the remainder result, and either associates the output with the final value (if the remainder is zero)
or recursively calls itself on the resulting b and r values.

; recursive loop which calls the basic block [the loop body]
(define (gcd_testero code a b gcd)

(fresh (s s+ stmp)
(updateo 'R_EAX a initial-store stmp)
(updateo 'R_EBX b stmp s)
(gcd_block_codeo code s s+)
(conde
[(lookupo 'R_EBX s+ '() ) ; final remainder is 0
(lookupo 'R_EAX s+ gcd)] ; result is in EAX

[(fresh (r)
(lookupo 'R_EBX s+ r)
(. r '()) ; r is non-0
(gcd_testero code b r gcd))]))) ; otherwise loop

Relation gcd_block_codeo specifies a loop invariant for our algorithm. It runs our x86 simulator on the given
code, assuming the above register convention and specifying mathematical constraints for outputs that a correct
run should produce. In this case, the constraints require that after the code runs, the new a value is the original b
value and the new b value is the remainder of a and b.

; spec for gcd loop invariant
(define (gcd_block_codeo code s s+)

(fresh (old_eax old_ebx new_eax new_ebx q r)
(lookupo 'R_EAX s old_eax) ; a
(lookupo 'R_EBX s old_ebx) ; b
(x86o code s s+)
(lookupo 'R_EAX s+ new_eax)
(lookupo 'R_EBX s+ new_ebx)
(≡ new_eax old_ebx) ; a ← b
(divo old_eax old_ebx q r) ; a = qb + r, r < b
(≡ new_ebx r)))
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Using this infrastructure, we now run an algorithm on our processor and verify the answers computed are
correct.

; euclid's gcd algorithm
(define euclid '(

(xor R_EDX R_EDX)
(div R_EBX)
(mov R_EAX R_EBX)
(mov R_EBX R_EDX)))

; test euclid's algorithm and get an answer
> (time (run* (d) (gcd_testero euclid (build-num 12) (build-num 9) d)))
cpu time: 78 real time: 80 gc time: 0
'((1 1))

> (time (run* (d) (gcd_testero euclid (build-num 42) (build-num 30) d)))
cpu time: 203 real time: 213 gc time: 15
'((0 1 1))

We see that we get the correct answers of 3 and 6, resepectively (in Oleg numeral representation). As with any
miniKanren relation, we can query for multiple answers at once; here we simultaneously obtain the gcd of 12
and all values of b up to 12, and verify that the answers are correct:

> (time (run* (b d) (<=o b (build-num 12)) (gcd_testero euclid (build-num 12) b d)))
cpu time: 1329 real time: 1336 gc time: 937
'(((0 0 1 1) (0 0 1 1))

((1) (1))
((0 1) (0 1))
((1 1) (1 1))
((0 0 1) (0 0 1))
((0 1 1) (0 1 1))
((1 1 0 1) (1))
((1 0 1) (1))
((0 1 0 1) (0 1))
((0 0 0 1) (0 0 1))
((1 0 0 1) (1 1)))

Interestingly, we see three different classes of answers to this query, generated in order: the first six are those
for which b = d , namely the factors of 12 (12, 1, 2, 3, 4, and 6). The next group (11 and 5) are those that are
relatively prime with 12, for which the only common divisor is 1. The remaining three answers (10, 8, and 9) are
those that are not factors of 12, yet still have common factors (2, 4, and 3, respectively) with 12.

3.2.4 Synthesis 3: Synthesizing Euclid’s Algorithm with a Sketch. We now synthesize a similar algorithm by
querying for the code. An initial, naïve approach attempts to synthesize the code directly using the relations we
have so far:

> (time (run 1 (c) (gcd_testero c (build-num 12) (build-num 9) (build-num 3))))
. . .

; [Fails with out-of-memory error]
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The out of memory error occurs because this naïve query is too vague, resulting in a state space explosion.
To narrow the search space, we employ a program sketch. Using the intuition that only a division operation
and moving some data around should be sufficient, we create a program sketch that only allows div and mov
instructions, with a specified program length. We take advantage of relational programming to auto-generate a
suitable sketch:

(define (gen-mov-div-listo depth out)
(conde
[(≡ depth '()) (≡ out '())]
[(. depth '())
(fresh (n l)

(minuso depth '(1) n)
(conde

[(fresh (op1 op2) (≡ out `((mov ,op1 ,op2) . ,l) ))]
[(fresh (op) (≡ out `((div ,op) . ,l) ))]

)
(gen-mov-div-listo n l) )]))

> (time (run 1 (c) (gen-mov-div-listo (build-num 4) c)
(gcd_testero c (build-num 12) (build-num 9) (build-num 3))))

cpu time: 361204 real time: 362308 gc time: 84412
'(((mov R_ECX ()) (div R_EBX) (mov R_EAX R_EBX) (mov R_EBX R_EDX)))

Here we have limited possible sketches to programs of length 4 with only div or mov instructions, and the
system is now able to produce an answer. Upon running the test queries below, we see that this new code produces
the same correct GCD answers as the original code above.

(define new-code '((mov R_ECX ()) (div R_EBX) (mov R_EAX R_EBX) (mov R_EBX R_EDX)))
> (time (run* (d) (gcd_testero new-code (build-num 12) (build-num 9) d)))
cpu time: 110 real time: 107 gc time: 46
'((1 1))
> (time (run* (d) (gcd_testero new-code (build-num 42) (build-num 30) d)))
cpu time: 265 real time: 262 gc time: 31
'((0 1 1))
> (time (run* (b d) (<=o b (build-num 12)) (gcd_testero new-code (build-num 12) b d)))
cpu time: 422 real time: 437 gc time: 76
'(((0 0 1 1) (0 0 1 1))

((1) (1))
((0 1) (0 1))
((1 1) (1 1))
((0 0 1) (0 0 1))
((0 1 1) (0 1 1))
((1 1 0 1) (1))
((1 0 1) (1))
((0 1 0 1) (0 1))
((0 0 0 1) (0 0 1))
((1 0 0 1) (1 1)))
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4 RELATED WORK
Rosette [Torlak and Bodik 2013] is another DSL embedded in Racket capable of program synthesis and angelic
execution. Instead of backtracking search, Rosette uses a satisfiability modulo theories (SMT) solver to find
solutions to synthesis and constraint problems. This gives it the potential to be more efficient than miniKanren in
finding solutions that are arithmetic in nature. While any sufficiently general program synthesis system should
be able to synthesize assembly code in a similar fashion to our approach, we found the Rosette system to be
focused on returning a single optimal answer to queries. This makes it more cumbersome to achieve large-scale
diversity with Rosette than with miniKanren in our experience.
Minimips5 is a miniKanren implementation of a MIPS architecture assembler/dissassembler. Its relation

converts between MIPS assembly language programs and their binary encodings. Minimips contains a full
syntactic description for MIPS instructions, but doesn’t appear to have an interpreter. It therefore has no
semantic description of the instructions, or the ability to synthesize code that satisfies a formal specification.
We chose to use the x86 architecture rather than a RISC architecture such as MIPS because a CISC architecture
naturally allows for more diversity of implementations. As future work we plan to implement a similar relational
assembler/disassembler for our x86 system.
Automated generation of assembly code is a common task of compilers and other similar tools. As noted in

Section 1, these tools do not have diversity of implementation as a goal. Some systems (e.g., [Hong and Gerber
1993; Pu et al. 1988]) do synthesize assembly code for specific tasks using algorithms unique to the task. However,
these systems do not synthesize general-purpose assembly code from arbitrary program constraints, or for the
purpose of implementation diversity.

5 CONCLUSION
This paper proposed the implementation of an assembly-level interpreter in miniKanren for the purpose of
synthesizing assembly code, motivated by the need for increased software diversity. This allows synthesis
problems to be broken up into small, manageable pieces. Such problems can be subdivided using specific sketches,
basic blocks, or effect traces; and can be driven by various inputs, including effect traces, processor states obtained
from existing code, availability of particular gadgets, or compiler-driven information. Our working prototype
implements an assembly interpreter for a small subset of x86, and experiments demonstrate its use for synthesizing
code in both straight-line and looping programs. Synthesis examples show the potential to synthesize large
numbers of diverse implementations.
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