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We present two formal semantics for the core miniKanren. First, we give denotational variant which corresponds to the
minimal Herbrand model for definite logic programs. Second, we present operational semantics which models interleaving,
and prove its soundness and completeness w.r.t. denotational semantics. Our development is supported by formal Coq
specification, thus making it certified.
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1 INTRODUCTION

The introductory book on miniKanren [Friedman et al. 2005] describes the language by means of an evolving
set of examples. In the series of follow-up papers [Alvis et al. 2011; Byrd and Friedman 2007; Hemann and
Friedman 2013, 2015; Hemann et al. 2016; Swords and Friedman 2013] various extensions of the language were
presented with their semantics explained in terms of Scheme implementation. We argue that this style of semantic
definition is fragile and not self-evident since it requires the knowledge of semantics of concrete implementation
language. In addition the justification of important properties of relational programs (for example, refutational
completeness [Byrd 2009]) becomes cumbersome. In the area of programming languages research a formal
definition for the semantics of language of interest is a de-facto standard, and in our opinion in its current state
miniKanren deviates from this standard.

There were some previous attempts to define a formal semantics for miniKanren. Lozov et al. [2017] present a
variant of nondeterministic operational semantics, and Rozplokhas and Boulytchev [2018] use another variant of
finite-set semantics. None of them was capable of reflecting the distinctive property of miniKanren search —
interleaving [Kiselyov et al. 2005], thus deviating from the conventional understanding of the language.

In this paper we present a formal semantics for core miniKanren and prove some its basic properties. First, we
define denotational semantics similar to the least Herbrand model for definite logic programs [Lloyd 1984]; then
we describe operational semantics with interleaving in terms of labeled transition system. Finally, we prove the
soundness and completeness of the operational semantics w.r.t the denotational one. We support our development
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C = {Cki
i } constructors with arities

TX = X ∪ {Cki
i (t1, . . . , tki ) | tj ∈ TX } terms over the set of variables X

D = T∅ ground terms
X = {x ,y, z, . . . } syntactic variables
A = {α , β ,γ , . . . } semantic variables
R = {Rkii } relational symbols with arities

G = TX ≡ TX unification
G ∧ G conjunction
G ∨ G disjunction
fresh X . G fresh variable introduction
Rkii (t1, . . . , tki ), tj ∈ TX relational symbol invocation

S = {Rkii = λ x i1 . . . x
i
ki
.дi ; } д specification

Fig. 1. The syntax of the source language

FV (x) = {x}

FV (Cki
i (t1, . . . , tk )) =

⋃
FV (ti )

FV (t1 ≡ t2) = FV (t1) ∪ FV (t2)
FV (д1 ∧ д2) = FV (д1) ∪ FV (д2)
FV (д1 ∨ д2) = FV (д1) ∪ FV (д2)
FV (fresh x . д) = FV (д) \ {x}

FV (Rkii (t1, . . . , tk )) =
⋃
FV (ti )

Fig. 2. Free variables in terms and goals

with a formal specification using Coq [Bertot and Castéran 2004] proof assistant1, thus outsourcing the burden
of proof checking to the automatic tool.
The paper organized as follows. In Section 2 we give the syntax of the language, describe its semantics

informally and discuss some examples. Section 3 contains the description of denotational semantics for the
language, and Section 4 — the operational semantics. In Section 5 we overview the certified proof for soundness
and completeness of operational semantics. The final section concludes.

2 THE LANGUAGE

In this section we introduce the syntax of the language we use throughout the paper, describe the informal
semantics and give some examples.

The syntax of the language is shown on Figure 1. First, we fix a set of constructors C with known arities and
consider a set of terms TX with constructors as functional symbols and variables from X . We parameterize this
set with an alphabet of variables, since in the semantic description we will need two kinds of variables. The first
kind, syntactic variables, is denoted by X. We also consider an alphabet of relational symbols R which are used
to name relational definitions. The central syntactic category in the language is a goal. In our case there are
1https://github.com/dboulytchev/miniKanren-coq

https://github.com/dboulytchev/miniKanren-coq
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five types of goals: unification of terms, conjunction and disjunction of goals, fresh variable introduction and
invocation of some relational definition. Thus, unification is used as a constraint, and multiple constraints can be
combined using conjunction, disjunction and recursion. For the sake of brevity we abbreviate immediately nested
“fresh” constructs into the one, writing “fresh x y . . . . д” instead of “fresh x . fresh y . . . . д”. The final
syntactic category is specification S. It consists of a set of relational definitions and a top-level goal. A top-level
goal represents a search procedure which returns a stream of substitutions for the free variables of the goal. The
definition for set of free variables for both terms and goals is given on Figure 2; as “fresh” is the sole binding
construct the definition is rather trivial. The language we defined is first-order, as goals can not be passed as
parameters, returned or constructed at runtime.
We now informally describe how relational search works. As we said, a goal represents a search procedure.

This procedure takes a state as input and returns a stream of states; a state (among other information) contains a
substitution which maps semantic variables into terms over semantic variables. Then five types of scenarios are
possible (dependent on the type of the goal):
• Unification “t1 ≡ t2” unifies terms t1 and t2 in the context of the substitution in the current state. If terms are
unifiable, then their MGU is integrated into the substitution, and one-element stream is returned; otherwise
the result is an empty stream.
• Conjunction “д1 ∧ д2” applies д1 to the current state and then applies д2 to the each element of the result,
concatenating the streams.
• Disjunction “д1 ∨ д2” applies both its goals to the current state independently and then concatenates the
results.
• Fresh construct “fresh x . д” allocates a new semantic variable α , substitutes all free occurrences of x in
д with α , and runs the goal.
• Invocation “Rkii (t1,...,tki )” finds a definition for relational symbol Rkii = λx1 . . . xki .дi , substitutes all free
occurrences of formal parameter x j in дi with term tj (for all j) and runs the goal in the current state.

We stipulate, that the top-level goal is preceded by an implicit “fresh” construct, which binds all its free
variables, and the final substitutions for these variables constitute the result of the goal evaluation.

Conjunction and disjunction form a monadic [Wadler 1995] interface with conjunction playing role of “bind”
and disjunction — of “mplus”. In this description we swept a lot of important details under the carpet — for
example, in actual implementations the components of disjunction are not evaluated in isolation, but both
disjuncts are being evaluated incrementally with the control passing from one disjunct to another (interleaving);
instead streams the implementation can be based on “ferns” [Byrd et al. [n. d.]] to defer divergent computations,
etc.
As an example consider the following specification:

appendo = λ x y xy .
( (x ≡ Nil ) ∧ (xy ≡ y ) ) ∨
( fresh h t ty .

(x ≡ Cons (h , t ) ) ∧

(xy ≡ Cons (h , ty ) ) ∧
(appendo y t ty )

) ;
reverso = λ x y .

( (x ≡ Nil ) ∧ (y ≡ Nil ) ) ∨
( fresh h t t ' .

(x ≡ Cons (h , t ) ) ∧
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(appendo t ' (Cons (h , Nil ) ) y ) ∧
(reverso t t ' )

) ;
reverso x x

Here we defined two relational symbols — “appendo” and “reverso”, — and specified a top-level goal
“reverso x x”. The symbol “appendo” defines a relational concatenation of lists — it takes three arguments
and performs a case analysis on the first one. If the first one is an empty list (“Nil”), then the second and the
third arguments are unified. Otherwise the first argument is deconstructed into a head “h” and a tail “t”, and the
tail is concatenated with the second argument using a recursive call to “appendo” and additional variable “ty”,
which represents the concatenation of “t” and “y”. Finally, we unify “Cons (h , ty )” with “xy” to form a final
constraint. Similarly, “reverso” defines relational list reversing. The top-level goal represents a search procedure
for all lists “x”, which are stable under reversing, i.e. represent palindromes. Running it results in an infinite
stream of substitutions:

α 7→ Nil

α 7→ Cons (β0 , Nil )
α 7→ Cons (β0 , Cons (β0 , Nil ) )
α 7→ Cons (β0 , Cons (β1 , Cons (β0 , Nil ) ) )
. . .

where “α” — a semantic variable, corresponding to “x”, “βi ” — free semantics variables.
The notions above can be formalized in Coq in a natural way using inductive data types. We have made a few

non-essential simplifications and modifications for the sake of convenience.
Specifically, we restrict the arities of constructors to be either zero or two:

Inductive term : Set :=
| Var : var → term

| Cst : con_name → term

| Con : con_name → term→ term→ term.

Here “var” and “con_name” — types representing variables and constructor names, whose definitions we
omitted for the sake of brevity. Similarly, we restrict relations to always have exactly one argument:

Definition rel : Set := term → goal.

These restrictions do not make the language less expressive in any way since we can represent a sequence of
terms as a list using constructors Nil0 and Cons2.

We also introduce one additional type of goals — failure — for deliberately unsuccessful computation (empty
stream). As a result, the definition of goals looks as follows:

Inductive goal : Set :=
| Fail : goal

| Unify : term → term→ goal

| Disj : goal → goal→ goal

| Conj : goal → goal→ goal

| Fresh : ( var → goal) → goal

| Invoke : rel_name → term→ goal.
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x [t/x] = t
y [t/x] = y y , x

Cki
i (t1, . . . , tki ) [t/x] = Cki

i (t1 [t/x], . . . , tki [t/x])

(t1 ≡ t2) [t/x] = t1 [t/x] ≡ t2 [t/x]
(д1 ∧ д2) [t/x] = д1 [t/x] ∧ д2 [t/x]
(д1 ∨ д2) [t/x] = д1 [t/x] ∨ д2 [t/x]

(fresh x .д) [t/x] = fresh x .д
(fresh y .д) [t/x] = fresh y . (д [t/x]) y , x

(Rkii (t1, . . . , tki ) [t/x] = Rkii (t1 [t/x], . . . , tki [t/x])

Fig. 3. Substitutions for terms and goals

Note that in our formalization we use the higher-order abstract syntax for variable binding [Pfenning and
Elliott 1988]. We preferred it to the first-order syntax because it gives us the ability to use substitution and
inductive principle provided by Coq. However, we still need to carefully ensure some expected properties on the
structure of syntax trees. For example, we should require that the definitions of relations do not contain unbound
variables:

Definition closed_goal_in_context ( c : list var) ( g : goal) : Prop :=
∀ n, is_fv_of_goal n g → In n c.

Definition closed_rel ( r : rel) : Prop :=
∀ ( arg : term), closed_goal_in_context ( fv_term arg) ( r arg).

Definition def : Set := { r : rel | closed_rel r}.

In the snippet above “def” corresponds to a set of relational symbol definitions in a specification.
We set an arbitrary environment (a map from relational symbol to the definition of relation) to use further

throughout the formalization. Failure goals allow us to define it as a total function:

Definition env : Set := rel_name → def.

Variable Prog : env.

3 DENOTATIONAL SEMANTICS

In this section we present a denotational semantics for the language we defined above. We use a simple
set-theoretic approach which can be considered as an analogy to the least Herbrand model for definite logic
programs [Lloyd 1984]. Strictly speaking, instead of developing it from scratch we could have just described the
conversion of specifications into definite logic form and took their least Herbrand model. However, in that case
we would still need to define the least Herbrand model semantics for definite logic programs in a certified way.
In addition, while for this concrete language the conversion to definite logic form is trivial, it may become less
trivial for its extensions (with, for examples, nominal constructs [Byrd and Friedman 2007]) which we plan to do
in future.
To motivate further development, we first consider the following example. Let us have the following goal:
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x ≡ Cons (y , z )

There are three free variables, and solving the goal delivers us the following single answer:

α 7→ Cons (β , γ )

where semantic variables α , β and γ correspond to the syntactic ones “x”, “y”, “z”. The goal does not put any
constraints on “y” and “z”, so there are no bindings for “β” and “γ ” in the answer. This answer can be seen as the
following ternary relation over the set of all ground terms:

{(Cons (β ,γ ), β,γ ) | β ∈ D, γ ∈ D} ⊂ D3

The order of “dimensions” is important, since each dimension corresponds to a certain free variable. Our main
idea is to represent this relation as a set of total functions

f : A 7→ D
from semantic variables to ground terms. We call these functions representing functions. Thus, we may refor-

mulate the same relation as

{(f (α), f (β), f (γ )) | f ∈ Jα ≡ Cons (β ,γ )K}
where we use conventional semantic brackets “J•K” to denote the semantics. For the top-level goal we need to

substitute its free syntactic variables with distinct semantic ones, calculate the semantics, and build the explicit
representation for the relation as shown above. The relation, obviously, does not depend on concrete choice of
semantic variables, but depends on the order in which the values of representing functions are tupled. This order
can be conventionalized, which gives us a completely deterministic semantics.
Now we implement this idea. First, for a representing function

f : A → D
we introduce its homomorphic extension

f : TA → D
which maps terms to terms:

f (α) = f (α)

f (Cki
i (t1, . . . .tki )) = Cki

i (f (t1), . . . f (tki ))

Let us have two terms t1, t2 ∈ TA . If there is a unifier for t1 and t2 then, clearly, there is a substitution θ which
turns both t1 and t2 into the same ground term (we do not require θ to be the most general). Thus, θ maps (some)
ground variables into ground terms, and its application to t1(2) is exactly θ (t1(2)). This reasoning can be performed
in the opposite direction: a unification t1 ≡ t2 defines the set of all representing functions f for which f(t1) = f(t2).

Then, the semantic function for goals is parameterized over environments which prescribe semantic functions
to relational symbols:

Γ : R → (TA∗ → 2A→D)
An environment associates with relational symbol a function which takes a string of terms (the arguments

of the relation) and returns a set of representing functions. The signature for semantic brackets for goals is as
follows:
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J•KΓ : G → 2A→D

It maps a goal into the set of representing functions w.r.t. an environment Γ.
We formulate the following important completeness condition for the semantics of a goal д:

∀α < FV (д) ∀d ∈ D ∀f ∈ JдK ∃f′ ∈ JдK : f′ (α) = d ∧ ∀β , α : f′ (β) = f (β)

In other words, representing functions for a goal д restrict only the values of free variables of д and do not
introduce any “hidden” correlations. This condition guarantees that our semantics is complete in the sense that it
does not introduce artificial restrictions for the relation it defines. It can be proven that the semantics of goals
always satisfy this condition.
We remind conventional notions of pointwise modification of a function

f [x ← v] (z) =

{
f (z) , z , x

v , z = x

and substitution of a free variable with a term in terms and goals (see Figure 3).
For a representing function f : A → D and a semantic variable α we define the following generalization

operation:

f ↑ α = {f [α ← d] | d ∈ D}

Informally, this operation generalizes a representing function into a set of representing functions in such a
way that the values of these functions for a given variable cover the whole D. We extend the generalization
operation for sets of representing functions F ⊆ A → D:

F ↑ α =
⋃
f∈F

(f ↑ α)

Now we are ready to specify the semantics for goals (see Figure 4). We’ve already given the motivation for the
semantics of unification: the condition f(t1) = f(t2) gives us the set of all (otherwise unrestricted) representing
functions which “equate” terms t1 and t2. Set union and intersection provide a conventional interpretation for
disjunction and conjunction of goals, and the semantics of relational invocation reduces to the application of
corresponding function from the environment. The only interesting case is “fresh x . д”. First, we take an
arbitrary semantic variable α , not free in д, and substitute x with α . Then we calculate the semantics of д [α/x].
The interesting part is the next step: as x can not be free in “fresh x . д”, we need to generalize the result
over α since in our model the semantics of a goal specifies a relation over its free variables. We introduce some
nondeterminism, by choosing arbitrary α , but it can be proven by structural induction, that with different choices
of free variable, semantics of a goal won’t change. Consider the following example:

fresh y . (α ≡ y ) ∧ (y ≡ Zero )

As there is no invocations involved, we can safely omit the environment. Then:
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Jt1 ≡ t2KΓ = {f : A → D | f (t1) = f (t2)} [UnifyD ]
Jд1 ∧ д2KΓ = Jд1KΓ ∩ Jд1KΓ [ConjD ]
Jд1 ∨ д2KΓ = Jд1KΓ ∪ Jд1KΓ [DisjD ]

Jfresh x .дKΓ = (Jд [α/x]KΓ) ↑ α , α < FV (д) [FreshD ]
JR (t1, . . . , tk )KΓ = (Γ R) t1 . . . tk [InvokeD ]

Fig. 4. Denotational semantics of goals

Jfresh y . (α ≡ y) ∧ (y ≡ Zero )K = (by FreshD )
(J (α ≡ β)∧ (β ≡ Zero)K) ↑ β = (by ConjD )
(Jα ≡ βK ∩ Jβ ≡ Zero)K) ↑ β = (by UnifyD )
({f | f (α) = f (β)} ∩ {f | f (β) = f (Zero)}) ↑ β = (by the definition of “f”)
({f | f (α) = f (β)} ∩ {f | f (β) = Zero}) ↑ β = (by the definition of “∩”)
({f | f (α) = f (β) = Zero}) ↑ β = (by the definition of “↑”)
{f | f (α) = Zero, f (β) = d,d ∈ D} = (by the totality of representing functions)
{f | f (α) = Zero}

In the end we’ve got the set of representing functions, each of which restricts only the value of free variable α .
The final component is the semantics of specifications. Given a specification

{Ri = λ x i1 . . . x
i
ki
.дi ; }ni=1 д

we have to construct a correct environment Γ0 and then take the semantics of the top-level goal:

J{Ri = λ x i1 . . . x
i
ki
.дi ; }ni=1 дK = JдKΓ0

As the set of definitions can be mutually recursive we apply the fixed point approach. We consider the following
function

F : (TA∗ → 2A→D)n → (TA∗ → 2A→D)n

which represents a semantic for the set of definitions abstracted over themselves. The definition of this function
is rather standard:

F (p1, . . . ,pn) = (t11 . . . t
1
k1
7→ Jд1 [t11/x

1
1 , . . . , t

1
k1
/x1k1 ]KΓ,

. . .
tn1 . . . t

n
kn
7→ Jдn [tn1 /x

n
1 , . . . , t

n
kn
/xnkn ]KΓ)

where Γ Ri = pi
Here pi is a semantic function for i-th definition; we build an environment Γ which associates each relational

symbol Ri with pi and construct a n-dimensional vector-function, where i-th component corresponds to a function
which calculates the semantics of i-th relational definition application to terms w.r.t. the environment Γ. Finally,
we take the least fixed point of F and define the top-level environment as follows:

Γ0 Ri = (f ix F ) [i]
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where “[i]” denotes the i-th component of a vector-function.
The least fixed point exists by Knaster-Tarski [Tarski 1955] theorem — the set (TA∗ → 2A→D)n forms a

complete lattice, and F is monotonic.
To formalize denotational semantics in Coq we can define representing functions simply as Coq functions:

Definition repr_fun : Set := var → ground_term.

We define the semantics via inductive proposition “in_denotational_sem_goal” such that

∀д, f : in_denotational_sem_goal д f⇐⇒ f ∈ JдKΓ

The definition is as follows:

Inductive in_denotational_sem_goal : goal → repr_fun→ Prop :=
| dsgUnify : ∀ f t1 t2, apply_repr_fun f t1 = apply_repr_fun f t2 →

in_denotational_sem_goal ( Unify t1 t2) f

| dsgDisjL : ∀ f g1 g2, in_denotational_sem_goal g1 f →

in_denotational_sem_goal ( Disj g1 g2) f

| dsgDisjR : ∀ f g1 g2, in_denotational_sem_goal g2 f →

in_denotational_sem_goal ( Disj g1 g2) f

| dsgConj : ∀ f g1 g2, in_denotational_sem_goal g1 f →

in_denotational_sem_goal g2 f →

in_denotational_sem_goal ( Conj g1 g2) f

| dsgFresh : ∀ f fn a fg, (~ is_fv_of_goal a ( Fresh fg)) →
in_denotational_sem_goal ( fg a) fn →

( ∀ x, x <> a → fn x = f x) →
in_denotational_sem_goal ( Fresh fg) f

| dsgInvoke : ∀ r t f, in_denotational_sem_goal ( proj1_sig ( Prog r) t) f →

in_denotational_sem_goal ( Invoke r t) f.

Here we refer to a fixpoint “apply_repr_fun” which calculates the extension “•” for a representing function,
and inductive proposition “is_fv_of_goal” which encodes the set of free variables for a goal.
Recall that the environment “Prog” maps every relational symbol to the definition of relation, which is

a pair of a function from terms to goals and a proof that it has no unbound variables. So in the last case
“( proj1_sig ( Prog r) t) ” simply takes the body of the corresponding relation; thus “Prog” inCoq specification
plays role of a global environment Γ.

It is interesting that in Coq implementation we do not need to refer to Tarski-Knaster theorem explicitly since
the least fixpoint semantic is implicitly provided by inductive definitions.
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4 OPERATIONAL SEMANTICS

In this section we describe operational semantics of miniKanren, which corresponds to the known implemen-
tations with interleaving search. The semantics will be given in the form of labeled transition system (LTS). From
now on we assume the set of semantic variables to be linearly ordered (A = {α1,α2, . . . }).
We introduce the notion of substitution

σ : A → TA
as a (partial) mapping from semantic variables to terms over the set of semantic variables. We denote Σ the set

of all substitutions, Dom (σ ) — the domain for a substitution σ ,VRan (σ ) =
⋃

α ∈Dom (σ ) FV (σ (α)) — its range
(the set of all free variables in the image).

The states in the transition system have the following shape

S = G × Σ × N | S ⊕ S | S ⊗ G

As we will see later, an evaluation of a goal is separated into elementary steps, and these steps are performed
interchangeably for different subgoals. Thus, a state has a tree-like structure with intermediate nodes corre-
sponding to partially-evaluated conjunctions (“⊗”) or disjunctions (“⊕”). A leaf in the form ⟨д,σ ,n⟩ determines
a goal in a context, where д — a goal, σ — a substitution accumulated so far, and n — a natural number, which
corresponds to a number of semantic variables used to this point. For a conjunction node its right child is always
a goal since it cannot be evaluated unless some result is provided by the left conjunct.
We also need extended states

S = ⋄ | S

where ⋄ symbolizes the end of evaluation, and the following well-formedness condition:

Definition 1. Well-formedness condition for extended states:
• ⋄ is well-formed;
• ⟨д,σ ,n⟩ is well-formed iff FV (д) ∪ Dom (σ ) ∪ VRan (σ ) ⊂ {α1, . . . ,αn};
• s1 ⊕ s2 is well-formed iff s1 and s2 well-formed;
• s ⊗ д is well-formed iff s is well-formed and for all leaf triplets ⟨_, _,n⟩ in s FV (д) ⊆ {α1, . . . ,αn}.

Informally the well-formedness restricts the set of states to those in which all goals use only allocated variables.
Finally, we define the set of labels:

L = ◦ | Σ × N

The label “◦” is used to mark those steps which do not provide an answer; otherwise a transition is labeled by a
pair of a substitution and a number of allocated variables. The substitution is one of the answers, and the number
is threaded through the derivation to keep track of allocated variables; we ignore it in further explanations.
The transition rules are shown on Figure 5. The first two rules specify the semantics of unification. If two

terms are not unifiable under the current substitution σ then the evaluation stops with no answer; otherwise it
stops with the answer equal to the most general unifier.
The next two rules describe the steps performed when disjunction (conjunction) is encountered on the top

level of the current goal. For disjunction it schedules both goals (using “⊕”) for evaluating in the same context as
the parent state, for conjunction — schedules the left goal and postpones the right one (using “⊗”).
The rule for “fresh” substitutes bound syntactic variable with a newly allocated semantic one and proceeds

with the goal; no answer provided at this step.
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⟨t1 ≡ t2,σ ,n⟩
◦
−→ ^, ∄mдu (t1, t2,σ ) [UnifyFail]

⟨t1 ≡ t2,σ ,n⟩
(mдu (t1,t2,σ ), n)
−−−−−−−−−−−−−→ ^ [UnifySuccess]

⟨д1 ∨ д2,σ ,n⟩
◦
−→ ⟨д1,σ ,n⟩ ⊕ ⟨д2,σ ,n⟩ [Disj]

⟨д1 ∧ д2,σ ,n⟩
◦
−→ ⟨д1,σ ,n⟩ ⊗ д2 [Conj]

⟨fresh x .д,σ ,n⟩
◦
−→ ⟨д [αn+1 /x ],σ ,n + 1⟩ [Fresh]

Rkii = λ x1 . . . xki .д〈
Rkii (t1, . . . , tki ),σ ,n

〉
◦
−→

〈
д [t1

/
x1 . . .

tki
/
xki ],σ ,n

〉 [Invoke]

s1
◦
−→ ^

(s1 ⊕ s2)
◦
−→ s2

[DisjStop]

s1
r
−→ ^

(s1 ⊕ s2)
r
−→ s2

[DisjStopAns]

s
◦
−→ ^

(s ⊗ д)
◦
−→ ^

[ConjStop]

s
(σ ,n)
−−−−→ ^

(s ⊗ д)
◦
−→ ⟨д,σ ,n⟩

[ConjStopAns]

s1
◦
−→ s ′1

(s1 ⊕ s2)
◦
−→ (s2 ⊕ s

′
1)

[DisjStep]

s1
r
−→ s ′1

(s1 ⊕ s2)
r
−→ (s2 ⊕ s

′
1)

[DisjStepAns]

s
◦
−→ s ′

(s ⊗ д)
◦
−→ (s ′ ⊗ д)

[ConjStep]

s
(σ ,n)
−−−−→ s ′

(s ⊗ д)
◦
−→ (⟨д,σ ,n⟩ ⊕ (s ′ ⊗ д))

[ConjStepAns]

Fig. 5. Operational semantics of interleaving search

The rule for relation invocation finds a corresponding definition, substitutes its formal parameters with the
actual ones, and proceeds with the body.

The rest of the rules specify the steps performed during the evaluation of two remaining types of the states —
conjunction and disjunction. In all cases the left state is evaluated first. If its evaluation stops with a result then
the right state (or goal) is scheduled for evaluation, and the label is propagated. If there is no result then the
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conjunction evaluation stops with no result (ConjStop) as well while the disjunction evaluation proceeds with
the right state (DisjStop).
The last four rules describe interleaving, which occurs when the evaluation of the left state suspends with

some residual state (with or without an answer). In the case of disjunction the answer (if any) is propagated, and
the constituents of the disjunction are swapped (DisjStep, DisjStepAns). In case of conjunction, if the evaluation
step in the left conjunct did not provide any answer, the evaluation is continued in the same order since there is
still no information to proceed with the evaluation of the right conjunct (ConjStep); if there is some answer, then
the disjunction of the right conjunct in the context of the answer and the remaining conjunction is scheduled for
evaluation (ConjStepAns).

The introduced transition system is completely deterministic. There was, however, some freedom in choosing
the order of evaluation for conjunction and disjunction states. For example, instead of evaluating the left substate
first we could choose to evaluate the right one, etc. In each concrete case we would end up with a different (but
still deterministic) system which would prescribe different semantics to a concrete goal. This choice reflects the
inherent non-deterministic nature of search in relational (and, more generally, logical) programming. However,
as long as deterministic search procedures are sound and complete, we can consider them “equivalent”2.

A derivation sequence for a certain state determines a trace — a finite or infinite sequence of answers. We may
define a set of finite or infinite sequences Xω over an alphabet X as a set of functions from natural numbers into
a lifted set X⊥ = X ∪ {⊥}:

Xω = {ω : N→ X⊥ | ∀n ∈ N, ω (n) = ⊥ ⇒ ω (n + 1) = ⊥}
Informally speaking, we represent a sequence as a function which maps positions (treated as natural numbers)

into the elements of the sequence. We use “⊥” to specify that there is no element at given position, and we
stipulate, that there are no “holes” in this representation: if there is no element at given position then there are
no elements at greater positions as well.

For this representation we may define the empty sequence ϵ and operations of prepending a sequence ω with
an element a and taking a suffix of a sequence ω from a position n as follows:

ϵ = i 7→ ⊥

aω = i 7→

{
a , i = 0

ω (i − 1) , otherwise

ω [n :] = i 7→ ω (n + i)

For a given state s a trace Trs ∈ Lω is a sequence of labels, defined as follows simultaneously with the sequence
of states {si }:

so = s

Trs (n) = a , sn+1 = s
′ if sn , ⋄, sn

a
−→ x ′

Trs (n) = ⊥ , sn+1 = ⋄ if sn = ⋄

The trace corresponds to the stream of answers in the reference miniKanren implementations.
To formalize the operational part in Coq we first need to define all preliminary notions from unification

theory [Baader and Snyder 2001] which our semantics uses.

2There still can be differences in observable behavior of concrete goals under different sound and complete search strategies: a goal can be
refutationally complete [Byrd 2009] under one strategy and non-complete under another.
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In particular, we need to implement the notion of the most general unifier (MGU). As is it well-known [McBride
2003] all standard recursive algorithms for calculating MGU are not decreasing on argument terms, so we can’t
define it as a simple recursive function in Coq due to the termination check. There is no such obstacle when we
define MGU as a proposition:

Inductive MGU : term → term→ option subst → Set := ...

However, we still need to use a well-founded induction to prove the existence of the most general unifier and
its defining properties:

Lemma MGU_ex : ∀ t1 t2, { r & MGU t1 t2 r}.

Definition unifier ( s : subst) ( t1 t2 : term) : Prop := apply_subst s t1 = apply_subst s t2.

Lemma MGU_unifies:
∀ t1 t2 s, MGU t1 t2 ( Some s) → unifier s t1 t2.

Definition more_general ( m s : subst) : Prop :=
∃ ( s' : subst), ∀ ( t : term), apply_subst s t = apply_subst s' ( apply_subst m t).

Lemma MGU_most_general :
∀ ( t1 t2 : term) ( m : subst),
MGU t1 t2 ( Some m) →
∀ ( s : subst), unifier s t1 t2 → more_general m s.

Lemma MGU_non_unifiable :
∀ ( t1 t2 : term),
MGU t1 t2 None → ∀ s, ~ ( unifier s t1 t2).

For this well-founded induction we use the number of free variables in argument terms as a well-founded
order on pairs of terms:

Definition terms := term ∗ term.

Definition fvOrder ( t : terms) := length ( union ( fv_term ( fst t)) ( fv_term ( snd t))).

Definition fvOrderRel ( t p : terms) := fvOrder t < fvOrder p.

Lemma fvOrder_wf : well_founded fvOrderRel.

After this preliminary work, the described transition relation can be encoded naturally as an inductively
defined proposition (here “state ' ” stands for an extended state):

Inductive eval_step : state → label→ state' → Set := ...

We state the fact that our system is deterministic through existence and uniqueness of a transition for every
state:

Lemma eval_step_ex : ∀ ( st : state), { l : label & { st' : state' & eval_step st l st'}}.
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Lemma eval_step_unique :
∀ ( st : state) ( l1 l2 : label) ( st'1 st'2 : state'),
eval_step st l1 st'1 → eval_step st l2 st'2 → l1 = l2 ∧ st'1 = st'2.

To work with (possibly) infinite sequences we use the standard approach in Coq — coinductively defined
streams:
Context { A : Set }.

CoInductive stream : Set :=
| Nil : stream

| Cons : A → stream→ stream.
Although the definition of the datatype is coinductive some of its properties we are working with make sense

only when defined inductively:
Inductive in_stream : A → stream→ Prop :=
| inHead : ∀ x t, in_stream x ( Cons x t)
| inTail : ∀ x h t, in_stream x t → in_stream x ( Cons h t).

Inductive finite : stream → Prop :=
| fNil : finite Nil

| fCons : ∀ h t, finite t → finite ( Cons h t).
Then we define a trace coinductively as a stream of labels in transition steps and prove that there exists a

unique trace from any extended state:
Definition trace : Set := @stream label.

CoInductive op_sem : state' → trace→ Set :=
| osStop : op_sem Stop Nil

| osState : ∀ st l st' t, eval_step st l st' →
op_sem st' t →

op_sem ( State st) ( Cons l t).

Lemma op_sem_ex (st' : state') : { t : trace & op_sem st' t}.

Lemma op_sem_unique :
∀ st' t1 t2, op_sem st' t1 → op_sem st' t2 → equal_streams t1 t2.

Note, for the equality of streams we need to define a new coinductive proposition instead of using the standard
syntactic equality in order for coinductive proofs to work [Chlipala 2013].

One thing we can prove using operational semantics is the interleaving properties of disjunction. Specifically,
we can prove that a trace for a disjunction is a one-by-one interleaving of streams for its disjuncts:

CoInductive interleave : stream → stream→ stream→ Prop :=
| interNil : ∀ s s', equal_streams s s' → interleave Nil s s'
| interCons : ∀ h t s rs, interleave s t rs → interleave ( Cons h t) s ( Cons h rs).



Certified Semantics for miniKanren • 5:15

Lemma sum_op_sem : ∀ st1 st2 t1 t2 t, op_sem ( State st1) t1 →

op_sem ( State st2) t2 →

op_sem ( State ( Sum st1 st2)) t →

interleave t1 t2 t.

This allows us to prove the expected properties of interleaving in a more general setting of arbitrary streams:
• the elements of the interleaved stream are exactly those of two interleaved streams;
• the interleaved stream is finite iff both interleaving streams are finite.

The corresponding Coq lemmas are as follows:

Lemma interleave_in : ∀ s1 s2 s, interleave s1 s2 s →

∀ x, in_stream x s ↔ in_stream x s1 ∨ in_stream x s2.

Lemma interleave_finite : ∀ s1 s2 s, interleave s1 s2 s →

( finite s ↔ finite s1 ∧ finite s2).

5 SEMANTICS EQUIVALENCE

Now when we defined two different kinds of semantics for miniKanren we can relate them and show that
the results given by these two semantics are the same for any specification. This will actually say something
important about the search in the language: since operational semantics describes precisely the behavior of the
search and denotational semantics ignores the search and describes what we should get from mathematical point
of view, by proving their equivalence we establish completeness of the search which means that the search will
get all answers satisfying the described specification and only those.

But first, we need to relate the answers produced by these two semantics as they have different forms: a trace
of substitutions (along with numbers of allocated variables) for operational and a set of representing functions
for denotational. We can notice that the notion of representing function is close to substitution, with only two
differences:
• representing function is total;
• terms in the domain of representing function are ground.

Therefore we can easily extend (perhaps ambiguously) any substitution to a representing function by composing
it with an arbitrary representing function and that will preserve all variable dependencies in the substitution. So
we can define a set of representing functions corresponding to substitution as follows:

[σ ] = {f ◦ σ | f : A 7→ D}
And denotational analog of an operational semantics (a set of representing functions corresponding to answers

in the trace) for given extended state s is then defined as a union of sets for all substitution in the trace:

JsKop = ∪(σ ,n)∈Trs [σ ]
This allows us to state theorems relating two semantics.

Theorem 1 (Operational semantics soundness). For any specification {. . . } д, for which the indices of all
free variables in д are limited by some number n

J⟨д, ϵ,n⟩Kop ⊂ J{. . . } дK.
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J^KΓ = ∅
J⟨д,σ ,n⟩KΓ = JдKΓ ∩ [σ ]
Js1 ⊕ s2KΓ = Js1KΓ ∪ Js2KΓ
Js ⊗ дKΓ = JsKΓ ∩ JдKΓ

Fig. 6. Denotational semantics of states

It can be proven by nested induction, but first, we need to generalize the statement so that the inductive
hypothesis would be strong enough for the inductive step. To do so, we define denotational semantics not
only for goals but for arbitrarily extended states. Note that this definition does not need to have any intuitive
interpretation, it is introduced only for proof to go smoothly. The definition of the denotational semantics for
extended states is on Figure 6. The generalized version of the theorem uses it:

Lemma 1 (Generalized soundness). For any top-level environment Γ0 acquired from some specification, for any
well-formed (w.r.t. that specification) extended state s

JsKop ⊂ JsKΓ0 .

It can be proven by induction on the number of steps in which a given answer (more accurately, the substitution
that contains it) occurs in the trace. The induction step is proven by structural induction on the extended state s .
It would be tempting to formulate the completeness of operational semantics as the inverse inclusion, but it

does not hold in such generality. The reason for this is that denotational semantics encodes only dependencies
between the free variables of a goal, which is reflected by the completeness condition, while operational semantics
may also contain dependencies between semantic variables allocated in “fresh”. Therefore we formulate the
completeness with representing functions restricted on the semantic variables allocated in the beginning (which
includes all free variables of a goal). This does not compromise our promise to prove the completeness of the
search as miniKanren provides the result as substitutions only for queried variables, which are allocated in the
beginning.

Theorem 2 (Operational semantics completeness). For any specification {. . . } д, for which the indices of all
free variables in д are limited by some number n

{f |{α1, ...,αn } | f ∈ J{. . . } дK} ⊂ {f |{α1, ...,αn } | f ∈ J⟨д, ϵ,n⟩Kop }.

Similarly to the soundness, this can be proven by nested induction, but the generalization is required. This
time it is enough to generalize it from goals to states of the shape ⟨д,σ ,n⟩. We also need to introduce one more
auxiliary semantics — bounded denotational semantics:

J•Kl : G → 2A→D

Instead of always unfolding the definition of a relation for invocation goal, it does so only given number of
times. So for a given set of relational definitions {Rkii = λ x i1 . . . x

i
ki
.дi ; } the definition of bounded denotational

semantics is exactly the same as in usual denotational semantics, except that for the invocation case:

JRkii (t1, . . . , tki )K
l+1 = Jдi [t1/x i1, . . . , tki /x

i
ki
]Kl

It is convenient to define bounded semantics for level zero as an empty set:
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JдK0 = ∅
Bounded denotational semantics is an approximation of a usual denotational semantics and it is clear that any

answer in usual denotational semantics will also be in bounded denotational semantics for some level:

Lemma 2. JдKΓ0 ⊂ ∪l JдKl

Formally it can be proven using the definition of the least fixed point from Tarski-Knaster theorem: the set on
the right-hand side is a closed set.
Now the generalized version of the completeness theorem is as follows:

Lemma 3 (Generalized completeness). For any set of relational definitions, for any level l , for any well-formed
(w.r.t. that set of definitions) state ⟨д,σ ,n⟩,

{f |{α1, ...,αn } | f ∈ JдKl ∩ [σ ]} ⊂ {f |{α1, ...,αn } | f ∈ J⟨д,σ ,n⟩Kop }.

It is proven by induction on the level l . The induction step is proven by structural induction on the goal д.
The proofs of both theorems are certified in Coq, although the proofs for a number of (obvious) technical

facts about representing functions and computation of the most general unifier as well as some properties of
denotational semantics, proven informally in Section 3, are admitted for now. For completeness we can not just
use the induction on proposition in_denotational_sem_goal, as it would be natural to expect, because the
inductive principle it provides is not flexible enough. So we need to define bounded denotational semantics in
our formalization too and perform induction on the level explicitly:

Inductive in_denotational_sem_lev_goal : nat → goal→ repr_fun→ Prop :=
...
| dslgInvoke : ∀ l r t f,

in_denotational_sem_lev_goal l ( proj1_sig ( Prog r) t) f →

in_denotational_sem_lev_goal ( S l) ( Invoke r t) f.
The lemma relating bounded and unbounded denotational semantics is translated into Coq:
Lemma in_denotational_sem_some_lev: ∀ ( g : goal) ( f : repr_fun),

in_denotational_sem_goal g f →

∃ l, in_denotational_sem_lev_goal l g f.
The statements of the theorems are as follows:
Theorem search_correctness: ∀ ( g : goal) ( k : nat) ( f : repr_fun) ( t : trace),

closed_goal_in_context ( first_nats k) g) →
op_sem ( State ( Leaf g empty_subst k)) t) →
in_denotational_analog t f →

in_denotational_sem_goal g f.

Theorem search_completeness: ∀ ( g : goal) ( k : nat) ( f : repr_fun) ( t : trace),
closed_goal_in_context ( first_nats k) g) →
op_sem ( State ( Leaf g empty_subst k)) t) →
in_denotational_sem_goal g f →

∃ ( f' : repr_fun), ( in_denotational_analog t f') ∧
∀ ( x : var), In x ( first_nats k) → f x = f' x.
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One important immediate corollary of these theorems is the correctness of certain program transformations.
Since the results obtained by the search on a specification are exactly the results from the mathematical model
of this specification, after the transformations of relations that do not change their mathematical meaning the
search will obtain the same results. Note that this way we guarantee only the stability of results as the set of
ground terms, the other aspects of program behavior, such as termination, may be affected. This allows us to
safely (to a certain extent) apply such natural transformations as:
• changing the order of constituents in conjunction or disjunction;
• swapping conjunction and disjunction using distributivity;
• moving fresh variable introduction.

and even transform relational definitions to some kinds of normal form (like all fresh variables introduc-
tion on the top level with the conjunctive normal form inside), which may be convenient, for example, for
metacomputation.

6 CONCLUSION AND FUTURE WORK

In this paper we presented a formal semantics for core miniKanren and proved some its basic properties,
which are believed to hold in existing implementations. We consider our work as an initial setup for a future
development of miniKanren semantics. The language we considered here lacks many important features, which
are already introduced and employed in many implementations. Integrating these extensions — in the first hand,
disequality constraints, — into the semantics looks a natural direction for future work. We also are going to
address the problems of proving some properties of relational programs (equivalence, refutational completeness,
etc.).
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