
Constructive Negation for MiniKanren

EVGENII MOISEENKO, Saint Petersburg State University and JetBrains Research, Russia

We present an extension of MiniKanren with the negation operator based on the method of constructive negation. The idea of
this method is to constructively build a stream of answers for the negated goal by collecting and negating individual answers
to the positive version of the goal. As we demonstrate on the series of examples constructive negation suits to pure logical
nature of MiniKanren: the relations involving the negation operator still can be “run” in various directions.

CCS Concepts: • Software and its engineering→ Functional languages; Constraint and logic languages;

Additional Key Words and Phrases: relational programming, constructive negation, OCanren

1 INTRODUCTION
MiniKanren [Byrd 2010; Friedman et al. 2005] is a minimalistic domain-specific language which brings features
of logic programming into a host language. TypicalMiniKanren implementation introduces only a few operators:
conjunction, disjunction, unification (which can be seen as equality constraint) and fresh variable introduction
(existential quantification). Although this basis constitutes a Turing-complete language, in practice there are
some cases when the availability of negative reasoning is desirable.
For example, consider the following problem. Suppose we want to write a program which removes the first

occurrence of a given element from a list. In order to do that inMiniKanren we have to first define a ternary
relation remove which binds the desired element, original list, and the same list after the deletion. Substituting
the first argument of the relation with some element e, the second argument with some list xs and the third
argument with a free variable q gives us a goal which is a proof search procedure. When passed to the run
function, the goal will produce a lazy stream of answers. Each answer is represented by substitution which binds
free variables to some terms. In the case of remove, we would expect a single answer, which binds q to the list,
equal to xs, except that the first occurrence of e is removed.

The code on Listing 1 demonstrates a possible implementation of remove. It consists of three disjuncts, which
represent three different cases. First, if the original list is empty, then the resulting list should also be empty. If
the original list is not empty and its head is equal to the given element, then the resulting list should be equal to
the tail. Finally, in the case when the head is not equal to the given element, the resulting list should be equal to
the original, from the tail of which the occurrence of the element e is deleted.

Given the definition of remove from Listing 1, the following query run (remove 2 [1;2;3] q) will wrongly
return two answers: q =[1;3] and q =[1;2;3] . The redundant (and, indeed, incorrect) answer q =[1;2;3] arose
because of the third disjunct from remove definition, which always succeeds and thus generates a copy of
the original list. We can prevent this behavior using disequality constraint, yet another primitive, which some
MiniKanren implementations provide. Adding constraint x . e to the third case makes all disjuncts mutually

Author’s address: Evgenii Moiseenko, e.moiseenko@2012.spbu.ru, Saint Petersburg State University, Saint Petersburg , JetBrains Research,
Russia.

This work is licensed under a Creative Commons “Attribution 4.0 International” license.

© 2019 Copyright held by the author(s).
miniKanren.org/workshop/2019/8-ART4

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

4:2 • Evgenii Moiseenko

disjoint. With the fixed definition of remove (Listing 2), the query given above returns the single answer q =[1;3]
as expected.

let remove e xs ys =
(xs ≡ [] ∧ ys ≡ [])
∨

fresh (x xs ′) (
x ≡ e ∧

xs ≡ x : : xs ′ ∧

ys ≡ xs ′

) ∨

fresh (x xs ′ ys ′) (
xs ≡ x : : xs ′ ∧

ys ≡ x : : ys ′ ∧

remove e xs ′ ys ′

)

Listing 1. A flawed definition of
remove relation

let remove e xs ys =
(xs ≡ [] ∧ ys ≡ [])
∨

fresh (x xs ′) (
x ≡ e ∧

xs ≡ x : : xs ′ ∧

ys ≡ xs ′

) ∨

fresh (x xs ′ ys ′) (
x . e ∧

xs ≡ x : : xs ′ ∧

ys ≡ x : : ys ′ ∧

remove e xs ′ ys ′

)

Listing 2. The correct definition of
the remove relation

let remove p xs ys =
(xs ≡ [] ∧ ys ≡ [])
∨

fresh (x xs ′) (
p x ∧

xs ≡ x : : xs ′ ∧

ys ≡ xs ′

) ∨

fresh (x xs ′ ys ′) (
¬(p x) ∧

xs ≡ x : : xs ′ ∧

ys ≡ x : : ys ′ ∧

remove p xs ′ ys ′

)

Listing 3. A generalized version of
the remove relation

A disequality constraint represents a very limited form of negation, which is often not sufficient. Imagine that
we want to generalize remove, so that instead of taking an element, it takes a predicate p and removes the first
element of the list which satisfies the predicate (Listing 3). In order to do that and avoid similar pitfalls as in
our first attempt to define remove, we need to ensure that the third disjunct succeeds only when the predicate p
fails on the head element of xs. Thus we need a general negation operator. Unfortunately, none of the existing
MiniKanren implementations provide this feature.

In the world of Prolog, negative reasoning is usually implemented using so-called negation as failure approach.
Under this rule, a goal ¬p succeeds whenever p fails, and it fails whenever p succeeds. Unfortunately, negation as
failure is unsound if the negated goal p contains free variables. For example, the query run (q ≡ 0) ∧ ¬(q ≡ 1)
succeeds, although run ¬(q ≡ 1) ∧ (q ≡ 0) fails. The failure in the last case is due to the fact that at the time
of negation execution the variable q is free, thus q ≡ 1 succeeds, and conversely ¬(q ≡ 1) fails. This example
demonstrates that negation as failure goes against the philosophy of MiniKanren, which positions itself as a
pure relational language without non-logical features.
In this work we present an implementation of the negation operator based on the method of constructive

negation. It overcomes several shortcomings of negation as failure and provides a more expressive form of
negative reasoning than disequality constraints. The idea of this method is to constructively build a stream of
answers for the negated goal. It is achieved by first collecting all answers to the positive version of the goal and
then negating them. The constructive negation approach while being an improvement over negation as failure
still has its own drawbacks. For example, applying the negation operator to the goal that has infinitely many
answers results in a non-terminating computation.
Although constructive negation was first proposed as an extension of Prolog, to the best of our knowledge

our work is the first attempt to adapt it for MiniKanren. We have developed a prototype implementation
for OCanren [Kosarev and Boulytchev 2018], a MiniKanren dialect embedded in OCaml. Like the rest of

Constructive Negation for MiniKanren • 4:3

MiniKanren, our version of constructive negation is developed in a pure functional style using persistent data
structures. This makes it different from the earlier implementations for Prolog.

Our paper is structured as follows. In Section 2 we give more examples of constructive negation usage. Section 3
describes our implementation. Next, Section 4 presents the evaluation of the negation on a series of examples. In
Section 5 we discuss the limitations of our approach and directions for future work. Section 6 reviews related
works. The final Section 7 concludes.

2 MOTIVATING EXAMPLES
In this section we give further motivation for adding the negation into relational programming. We present
several examples of how the negation can be used.

2.1 Relational If-then-else
In the Prolog one can simulate the conditional if-then-else operator using so-called soft cut [Naish 1995]. The
behavior of the soft cut c →∗ t ; e can be described as follows:

• if the goal c succeeds (i.e. produces at least one answer) then the result of c →∗ t ; e is equivalent to
c ∧ t;

• if the goal c fails (i.e. produces no answers at all) then the result of c →∗ t ; e is equivalent to e.
The soft cut is an example of a non-relational feature. Such features usually do not compose well in the

sense that they are sensitive to the order in which they appear in a program. For example, consider the goal
(c →∗ t ; e) ∧ g, and assume that c ∧ g always fails regardless of the order of conjuncts. Then if c succeeds
the result of the above goal will be equivalent to c ∧ t ∧ g and thus it will fail. Suppose we reorder the
conjuncts as follows: g ∧ (c →∗ t ; e). Now the goal c, when executed after g, certainly fails, and thus the
result of the whole goal will be equivalent to g ∧ e which does not fails necessarily. One can see that the simple
reordering of subgoals in the program can lead to the different results.
With the help of constructive negation if-then-else can be simply expressed as follows:
let ifte c t e =

(c ∧ t) ∨ (¬ c ∧ e)
The behavior of if-then-else defined in this way subsumes the behavior of the soft cut. That is, every answer to

the query run (c →∗ t ; e) is also an answer to the query run (ifte c t e) . Moreover, ifte is not sensitive
to the order of subgoals in the program.

2.2 Classical Implication and Universal Quantification
With the negation added to the language, one can easily express other connectives of the classical first-order
logic, namely the implication and universal quantification1, using the well-known equivalences.

let (⇒) : goal → goal → goal =
fun g1 g2 → ¬ g1 ∨ (g1 ∧ g2)

let forall : (′a → goal) → goal =
fun g → ¬ fresh (x) (¬ g x)

However, we should make a few remarks here. It is well known that the search implemented in conventional
MiniKanren is complete, meaning that every answer to an arbitrary query will be found eventually. In the
presence of constructive negation (and thus implication and universal quantification defined through negation)
1 It is easy to see that c ⇒ t is equivalent to ifte c t succ

4:4 • Evgenii Moiseenko

the search becomes incomplete as we will later see. Moreover, constructive negation is computationally heavy
and thus the double usage of it, as in the definition of forall, can be inefficient in some cases.

Despite all this trouble we have found that the above definitions are still useful. Some of the previousMiniKan-
ren implementations introduced eigen variables, adopted from λProlog [Miller and Nadathur 2012]. Eigen
variables act as a universally quantified variables. Yet, to the best of our knowledge, there is no sound implemen-
tation of eigen variables with the support of disequality constraints. We observed that our implementation of
universal quantifications through double negation works nicely with disequalities (we give some examples in the
Section 4).

2.3 Graph Unreachability Problem
One of the classical examples of negation application in logic programming is a problem of checking whether
one node of the graph is unreachable from the another [Przymusinski 1989]. The code on Listing 4 defines binary
relation edge, which binds pairs of nodes in graph, connected by some edge, and binary relation reachable,
which is nothing more than a transitive closure of the edge relation. Then the relation unreachable is simply
negation of reachable.

let edge x y =
(x , y) ≡ (′a ′ , ′b ′) ∨

(x , y) ≡ (′b ′ , ′a ′) ∨

(x , y) ≡ (′b ′ , ′c ′) ∨

(x , y) ≡ (′c ′ , ′d ′)

let reachable x y =
x ≡ y ∨

fresh (z) (
edge x z ∧ reachable z y

)

let unreachable x y =
¬(reachable x y)

Listing 4. Unreachability in a graph

Given this definition the query run unreachable ′c ′ ′a ′ will succeed. A knowledgeable reader might notice
that constructive negation is not necessary in this case because negation as failure will deliver the same result.
But the query run unreachable ′c ′ q will fail under negation as failure because of the free variable q which
will appear under the negation. However constructive negation will succeed delivering the constraint q . ′d ′ .

2.4 Unreachability in Labeled Transition Systems
One can consider a special kind of graphs — labeled transition systems [Baier and Katoen 2008]. Labeled transition
system is defined by a set of states S , a set of labels L and a ternary transition relation R ⊆ S ×L×S . By existential
quantification over labels one can then obtain a binary relation. Taking its transitive closure gives the reachability
relation. The negation of the reachability relation can be used to check that some state s ′ is not reachable from
the initial state s . The Listing 5 shows an encoding of an abstract labeled transition system in OCanren.

Labeled transition systems are often used to describe the behavior of imperative languages. Although the naive
encoding of transition relation in OCanren with simple enumeration of reachable states is often not tractable for

Constructive Negation for MiniKanren • 4:5

checking reachability (or unreachability) in huge state spaces arising in practical imperative programs, it still can
be used, for example, for the task of prototyping the semantics of such languages.
module type LTS = sig

type state

type label

val transition : state → label → state → goal

end

module LTSExt (T : LTS) = struct

let reachable : T .state → T .state → goal =
fun s s ′ ′ →

s ≡ s ′ ′

∨

fresh (l s ′) (
T .transition s l s ′ ∧

reachable s ′ s ′ ′

)

let unreachable : T .state → T .state → goal =
fun s s ′ →

¬(reachable s s ′)
end

Listing 5. Unreachability in a labeled transition system

3 IMPLEMENTATION
In this section we present our implementation of constructive negation. We start with the general ideas behind
the method (Section 3.1). We describe how the constructive negation behaves in concrete examples, starting
from trivial ones and moving to more sophisticated. During this presentation, we will observe, that in order to
implement constructive negation, we need a solver for universally quantified disequality constraints. We will
show that such solver can be implemented on top of existing MiniKanren disequality solver with just a few
modifications (Section 3.2). In the Section 3.3, we describe how the OCanren search can be extended to support
constructive negation. We will also discuss how negation interacts with recursion and present the notion of
stratification (Section 3.4).

3.1 General Ideas
Constructive negation is based on the following idea: given a goal ¬g, one can construct an answer for this goal by
collecting all answers to its positive version g and then taking their complementation. In order to do that, a notion
of “negation” of an answer is needed. Since each answer can be matched to some logical formula [Przymusinski
1989; Stuckey 1991], a “negation” of an answer corresponds to the logical negation of this formula.

4:6 • Evgenii Moiseenko

Example 1. Consider the goal¬(q ≡ 1 ∧ r ≡ 2) . Its positive version (q ≡ 1) ∧ (r ≡ 2) has single answer,
a substitution {q 7→ 1, r 7→ 2} which corresponds to the formula q = 1 ∧ r = 2. By negating this formula we
obtain q , 1 ∨ r , 2. This formula still can be represent by a single substitution {q 7→ 1, r 7→ 2}. However, we
now treat this substitution differently, as a disequality constraint.

SomeMiniKanren implementations (including OCanren) already have the support for disequality constraints.
A programmer can use them with the help of . primitive, as we have seen in the remove example (Listing 2).
Usually, the support for disequalities is implemented as follows.

• A current state is maintained during the search. The state consists of a substitution, which represents
positive information, and a disequality constraint store, which represents negative information. A constraint
store can be implemented simply as a list of substitutions, or as a more efficient data structure.

• Each time a subgoal of the form t . u is encountered during the search, its satisfiability in current
substitution is checked. If it is satisfiable, then disequality is added to the constraint store.

• Each time a subgoal of the form t ≡ u is encountered during the search, the current substitution is refined
by the result of unification of terms t and u. Then the satisfiability of disequality constraints is rechecked
in the refined substitution.

Various optimizations can be applied to the scheme above. For example, there is no need to recheck every
disequality in the store after each unification. We will not discuss these optimizations here, as they are irrelevant
to our goals.
Unfortunately, as the next example illustrates, disequalities presented above are not sufficient to implement

constructive negation.

Example 2. Consider a goal ¬(fresh (x) (q ≡ (x , x)) , which states that q should not be equal to some pair
of identical terms. The subgoal fresh (x) (q ≡ (x , x)) succeeds, delivering the substitution {q 7→ (x, x)}.
Because the variable x occurs under fresh , the corresponding formula is existentially quantified: ∃x .q = (x ,x).
By the negation of this formula we obtain ∀x .q , (x ,x). This formula differs from disequality formula from
example 1 as it contains universally quantified variable x.

Thereby, in order to support the negation of goals, containing fresh , we need to extend disequality constraint
solver, so it can check the satisfiability of universally quantified disequality constraints in the form ∀x . t , u 2 [Chan
1988; Stuckey 1991]. Later, in Section 3.2 we will show how it can be done, for now let us assume we have such a
solver.

We took care about fresh under negation. It led us to a more complicated representation of the state. During
the search we maintain a pair of a current substitution and a universally quantified disequality constraint store.
But now an interesting question arises: is this representation closed under negation? If we perform negation one
more time, will we obtain a finite number of states in a similar form?
Lucky for us, it is the case. In order to verify it, let us consider a logical formula which corresponds to the

representation of the state:

∃x .
(∧

i

(vi = ti) ∧
∧
j

∀yj .
∨
k

(w jk , ujk)

)
(1)

Here vi and w jk denote some variables, ti and ujk denote some terms. Existentially quantified variables x
correspond to the variables occurred under fresh . The left conjunct corresponds to the substitution, the right
conjunct corresponds to the constraint store. The constraint store itself is represented as a conjunction of
individual universally quantified disequalities. As we have seen in example 1, each disequality corresponds to a
2 x notation denotes a vector of variables, t and u are terms that may or may not contain variables from x

Constructive Negation for MiniKanren • 4:7

disjunction of individual inequalities over variables3. Besides existential variables x and universal variables yj ,
there are free variables q that may occur in the formula (such as variables q and r in the examples 1, 2).
By logical negation of the above formula, we get the following:

∀x .
(∨

i

(vi , ti) ∨
∨
j

∃yj .
∧
k

(w jk = ujk)

)
(2)

The left disjunct, which corresponded to the substitution in the original formula, now became a disequality
constraint. Looking at the right disjunct, we can see that each disequality has transformed into a substitution.
However, there is one subtlety here. Variablesw jk may be universally quantified, that isw jk ∈ x for some j,k .
Moreover, the terms ujk may contain universally quantified variables as well, Vars(ujk) ⊆ x for some j,k . In the
section 3.2 we will show, that each disjunct ∃yj .∧k (w jk = ujk) is either unsatisfiable or could be rewritten as
∃yj .∧k∗ (w∗

jk∗ = u
∗
jk∗), such that universally quantified variables do not occur among variablesw∗

jk∗ or in terms
u∗jk∗ [Liu et al. 1999].

Taking this into account, we can rewrite the formula 2 as follow:

(
∨
j

∃yj .
∧
k∗

(w∗
jk∗ = u

∗
jk∗)) ∨ ∀x .

∨
i

(vi , ti) (3)

In the obtained formula each disjunct corresponds to one state in the form, similar to the given in formula 1.
In the left disjunct, each sub-disjunct corresponds to a substitution with an empty disequality constraint, the
right disjunct corresponds to the single universally quantified disequality constraint with an empty substitution.
Thereby, the proposed representation of states is closed under negation.

One can perform further manipulations on the formula 3. Given that equivalence a ∨ ¬b = a ∧ b ∨ ¬b holds in
classical logic, we can rewrite formula 3 in the following way:

(∃x .
∧
i

(vi = ti) ∧
∨
j

∃yj .
∧
k∗

(w∗
jk∗ = u

∗
jk∗)) ∨ ∀x .

∨
i

(vi , ti) (4)

The latter transformation, while vacuous from the logical point of view, could improve the performance of
the search in practice. It follows from the fact, that the subpart ∃x .∧i (vi = ti) of the formula extends each
substitution with additional mappings, thus delivering more positive information. If the negation constitutes a
subpart of some larger goal, this positive information could lead to the earlier failure during the search.

Finally let us consider the negation in general case. A goal can be matched to a logical formula in the following
way. Each answer to the goal corresponds to the state which itself corresponds to a logical formula in the form
similar to one in formula 1. Goal can have multiple answers (even an infinite number). In the corresponding
logical formula these answers will be connected by the disjunction:

∨
n

(
∃xn .

(∧
i

(vni = tni) ∧
∧
j

∀ynj .
∨
k

(wnjk , unjk)

))
(5)

The negation of this formula after an application of the transformations described above will become:

∧
n

(
(∃xn .

∧
i

(vni = tni) ∧
∨
j

∃ynj .
∧
k∗

(w∗
njk∗ = u

∗
njk∗)) ∨ ∀xn .

∨
i

(vni , tni)

)
(6)

3 We will give further explanation in section 3.2

4:8 • Evgenii Moiseenko

In this way, we have obtained the result of the negation of the goal as a conjunction of the negation of individual
answers to the positive version of the goal. However, one of the pitfalls of this construction is that the process
will not terminate if the positive version of the goal has an infinite number of answers. Thus, in the general case,
it makes the OCanren search incomplete for the goals involving negation.

3.2 Constraint Solver, Formally
In this section we will formally define the satisfiability of universally quantified disequality constraints and
quantified equalities, mentioned in section 3.1. We will also present a simple decision procedure for satisfiability
checking. To do that we need a rather standard notions of terms, substitutions, unifiers, etc. For the sake of
completeness we give these definitions here. We also mention a standard unification algorithm as a decision
procedure for equality constraints. This view of unification bridges the gap between the conventional and
constraint logic programming.
Let us start with definitions of terms and substitutions.

Definition 1. Given an infinite set of variables V and a finite set of constructor symbols C = {Ci
ni }i , each with

associated arity ni , the set of terms T is inductively defined as follow:
• ∀v ∈ V .v ∈ T — every variable is a term;
• ∀ck ∈ C . ∀t1 . . . tk ∈ T . ck (t1, . . . , tk) ∈ T — every application of k-ary constructor symbol to k terms is a
term.

From now on we will assume that terms are untyped (unsorted) and that there exists an infinitely many
constructors of any arity.

Definition 2. Two terms t and u are syntactically equal, denoted as t = u, iff either
• t = v and s = v for some variable v ;
• t = ck (t1, . . . , tk), s = ck (s1, . . . , sk) and ∀i ∈ {1..k}. ti = si .

Definition 3. A substitution σ is a function from variables to terms: σ : V → T , s.t. σ (x) , x only for a finite
number of variables. Every substitution σ can be represented as a finite list of pairs {x1 7→ t1, . . . ,xn 7→ tn}.
By dom(σ) we denote the set {x1, . . . ,xn} and by codom(σ) we denote the set {t1, . . . , tn}. We denote empty
substitution as ⊤. We also extend the set of substitutions defined above with the one additional element ⊥.

Definition 4. A substitution can be applied to a term. The result of an application of σ (σ , ⊥) to t , written as
tσ , is a term defined in the following way:

• xσ ≜ σ (x);
• ck (t1, . . . , tk)σ ≜ ck (t1σ , . . . , tkσ).

The result of the application of ⊥ to any term is undefined.

Lemma 1. Given two substitutions σ and θ , if ∀v ∈ V . σ (v) = θ (v) then ∀t . tσ = uθ .
Proof. Can be proved by the induction on t . □

We are now ready to define the the satisfiability of equality constraint.

Definition 5. Equality constraint t ≡ u is
• satisfiable if ∃σ . tσ = uσ ; such σ is called a unifier of t and u;
• unsatisfiable otherwise.

Next, we show that the standard unification algorithm can be seen as a decision procedure for checking
satisfiability of equality constrains. Before that we need to introduce several definitions.

Constructive Negation for MiniKanren • 4:9

Definition 6. A term t is subsumed by the term u, denoted as t ⊑ u, iff ∃σ . t = uσ . If t ⊑ u we will also say that
t is a more specific term than u, or u is a more general term than t .

Definition 7. A substitution σ is subsumed by a substitution τ , denoted as σ ⊑ τ , iff ∀t . tσ ⊑ tτ . If σ ⊑ τ we
also say that σ is a more specific substitution than τ , or σ is a more general substitution than τ .

Definition 8. Given terms t and u their unifier σ is called the most general unifier, iff for every other unifier τ σ
is more general that τ , τ ⊑ σ .

Theorem 1. Given terms t and u they are either not unifiable (meaning that ∀σ . tσ , uσ), or there exists their
most general unifier.

Proof. Proof of this statement can be found in [Robinson et al. 1965]. Proof of the termination and correctness
of the unification algorithm, used by the most MiniKanren implementations, can be found in [Kumar and
Norrish 2010]. □

From now on we will denote the most general unifier of two terms t and u as mgu(t ,u). In case of t is not
unifiable with u, we assume that mgu(t ,u) = ⊥.

Remark 1. Note we can associate with an equality constraint t ≡ u a logical first-order formula t = u.
Additionally, we can associate with each substitution a logical first-order formula by the following rules:

• empty substitution ⊤ is associated with the truth constant ⊤;
• ⊥ is associated with the falsity constant ⊥;
• {x1 7→ t1, . . . ,xn 7→ tn} is associated with the formula x1 = t1 ∧ · · · ∧ xn = tn .

Now we can have yet another view on unification. We can say that giving the problem of deciding satisfiability
of the formula t = u, a unification algorithm reduces it to checking satisfiability of a simpler formula, which
corresponds to a substitution. Such a formula is either trivially unsatisfiable (in the case of⊥) or trivially satisfiable.

Later on we will need the notion of idempotent substitution and idempotent unifier.

Definition 9. Substitution σ is idempotent iff ∀t . tσσ = tσ

Lemma 2. If two terms are unifiable, there exists their idempotent unifier.

Proof. For the proof of this statement (for the case of unification algorithm, used in MiniKanren), we refer
an interested reader to [Kumar and Norrish 2010]. □

We are ready to move on to disequality constraints. We start with the regular (not quantified) disequalities.

Definition 10. A disequality constraint t . u is
• satisfiable if ∃σ . tσ , uσ ;
• unsatisfiable otherwise.

Next lemma gives us a simple decision procedure for checking satisfiability of disequalities.

Lemma 3. Disequality constraint t . u is
• satisfiable if mgu(t ,u) , ⊤;
• unsatisfiable otherwise.

Proof. Let θ = mgu(t ,u). Let us first show that if θ = ⊤ then disequality is unsatisfiable. By the definition of
⊤ we have tθ = t and uθ = u, by the definition of unifier tθ = uθ , and thus t = u. From that, it is easy to show
that ∀σ . tσ = sσ , which means that the disequality is unsatisfiable according to the definition 10. If θ , ⊤ then
there exists a substitution σ , s.t. θ ⊑ σ (e.g. σ = ⊤). Since θ is most general unifier, and σ is more general that θ ,
then σ is not a unifier, and thus tσ , uσ . □

4:10 • Evgenii Moiseenko

Given lemma 3, the satisfiability of constraint t . u can be checked easily. One need to compute mgu(t ,u) and
if it is not an empty substitution, then constraint is satisfiable.

Remark 2. Given disequality constraint t . u, a substitution mgu(t ,u), can be matched to the logical formula in
the following way:

• the empty substitution ⊤ is associated with falsity constant ⊥;
• ⊥ is associated with the truth constant ⊤;
• {x1 7→ t1, . . . ,xn 7→ tn} is associated with the formula x1 , t1 ∨ · · · ∨ xn , tn .

The following definition introduces universally quantified disequalities.

Definition 11. Universally quantified disequality constraint ∀x . t . u is
• satisfiable iff ∃σ . ∀τ , dom(τ) ⊆ x . tτσ , uτσ
• unsatisfiable iff ∀σ . ∃τ , dom(τ) ⊆ x . tτσ = uτσ

For the decision procedure of this type of disequalities, we need one auxiliary lemma.

Lemma 4. Given terms t and u consider θ = mgu(t ,u). Assume without the loss of generality that x ⊈ codom(θ)

(if v 7→ x ∈ θ for some x ∈ x consider θ̂ such that it is equal to θ except that instead of mapping v to x it maps x
to v). Universally quantified disequality constraint ∀x . t . u is

• satisfiable if θ = ⊥ or dom(θ) ⊈ x
• unsatisfiable if dom(θ) ⊆ x

Proof. First, let us show that θ = ⊥ or dom(θ) ⊈ x implies satisfiability.We need to show that∃σ . ∀τ , dom(τ) ⊆
x . tτσ , uτσ . Take σ = ⊤. Thus tτσ = tτ and uτσ = uτ . It is left to show that ∀τ , dom(τ) ⊆ x . tτ , uτ . If
θ = ⊥ then t and u are not unifiable, which implies the above statement. Otherwise, consider some τ such that
dom(τ) ⊆ x . If tτ = uτ then τ is a unifier of t and u. Thus τ ⊑ θ . If we will show that dom(θ) ⊆ dom(τ) ⊆ x
we will get a contradiction with the our assumptions and therefore tτ , uτ . Indeed, consider v ∈ dom(θ). If
v < dom(τ) consider two cases:

• v 7→ w ∈ θ for somew ∈ V . From the assumptions follows thatw < x and thusw < dom(τ). Consider the
term f (v,w) for some binary constructor f . It is easy to see that
f (v,w)τ = f (v,w) ̸⊑ f (w,w) = f (v,w)θ , which contradicts τ ⊑ θ . Thus it should be that v ∈ dom(τ).

• v 7→ s ∈ θ for some term s < V . Then, trivially vτ = v ̸⊑ s = vθ , which contradicts τ ⊑ θ . Thus it should
be that v ∈ dom(τ).

Finally, let us show that if dom(θ) ⊆ x then ∀σ . ∃τ , dom(τ) ⊆ x . tτσ = uτσ . Indeed, consider some σ . Take
τ = θ . Then tτ = uτ and thus tτσ = uτσ . □

By the above lemma, if the substitutionmgu(t ,u)maps only universally quantified variables, then the disequality
is unsatisfiable and satisfiable otherwise.

Finally, it is left to show how to check satisfiability of the quantified equalities of the form ∀x . ∃y. t ≡ u. As we
will see soon, if the constraint of this form is satisfiable, then the logical formula, corresponding to the constraint,
∀x . ∃y. t = u is equivalent to the formula ∃y∗.∧i vi = ti such that vi ∈ V and vi < x and Vars(ti) ∩ x = ∅ for all
i [Liu et al. 1999].

Definition 12. Quantified equality constraint of the form ∀x∃y. t ≡ u is
• satisfiable iff ∃σ . ∀τ , dom(τ) ⊆ x . ∃ϕ, dom(ϕ) ⊆ y. tϕτσ = uϕτσ
• unsatisfiable iff ∀σ . ∃τ , dom(τ) ⊆ x . ∀ϕ, dom(ϕ) ⊆ y. tϕτσ , uϕτσ

Constructive Negation for MiniKanren • 4:11

Lemma 5. If terms t and u are not unifiable then the constraint is unsatisfiable. Otherwise let θ be an idempotent
unifier of t and u (Lemma 2 states that if terms are unifiable there exists their idempotent unifier). Let θy ≜ {y 7→

t | y 7→ t ∈ θ ∧ y ∈ y}. Let θ̂ = {v 7→ t | v 7→ t ∈ θ ∧v < y}. Then the quantified equality constraint of the form
∀x∃y. t ≡ u is

• satisfiable if dom(θ̂) ∩ x = ∅ and ∀p ∈ codom(θ̂). Vars(p) ∩ x = ∅

• unsatisfiable if dom(θ̂) ∩ x , ∅ or ∃p ∈ codom(θ̂). Vars(p) ∩ x , ∅

Proof. First, it is obvious that if t and u are not unifiable then the constraint is unsatisfiable. Next, let
us prove the statement involving satisfiability. We need to show that if the given condition is met, then
∃σ . ∀τ , dom(τ) ⊆ x . ∃ϕ, dom(ϕ) ⊆ y. tϕτσ = uϕτσ . Take σ = θ̂ . Given an arbitrary τ such that dom(τ) ⊆ x
take ϕ to be equal to θy . To complete the proof we will need an auxiliary statement.

• ∀s . sτθ̂ = sθ̂τ̂ where τ̂ ≜ {x 7→ tθ̂ | x 7→ t ∈ τ }.

Proof. By the Lemma 1 it is sufficient to show that ∀v ∈ V .vτθ̂ = vθ̂τ̂ . Consider the cases:
– v ∈ x . Then vτθ̂ = τ (v)θ̂ . Since dom(θ̂) ∩ x = ∅, θ̂ (v) = v . Then vθ̂τ̂ = vτ̂ and by the construction
vτ̂ = τ (v)θ̂ .

– v < x . Then vτθ̂ = θ̂ (v). Since ∀p ∈ codom(θ̂). Vars(p) ∩ x = ∅, vθ̂τ̂ = vθ̂ and trivially vθ̂ = θ̂ (v).
■

By this statement tθyτθ̂ = tθyθ̂τ̂ and uθyτθ̂ = uθyθ̂τ̂ . Because θ is idempotent tθ = tθyθ̂ and uθ = uθyθ̂ .
Finally, since θ is a unifier tθ = uθ .

It is left to prove the statement involving unsatisfiability. In fact, we will prove more general statement.
• Let t̃ and ũ be two arbitrary unifiable terms, let θ̃ be their unifier. Then
∀x ⊆ dom(θ̃) ∪

⋃
p∈codom(θ̃)Vars(p),x , ∅. ∀σ . ∃τ , dom(τ) ⊆ x . t̃τσ , ũτσ

Proof. By the induction on t :
– t̃ = v for some v ∈ V . Consider the cases for u:
∗ ũ = w for somew ∈ V . Then θ̃ = {v 7→ w} and either v ∈ x orw ∈ x .
Let the former be true (the other case is similar). Given some arbitrary σ
take τ ≜ {v 7→ z | z ∈ V \ (dom(σ) ∪

⋃
p∈codom(σ)Vars(p))}. Then vτσ = z andwτσ , z.

∗ ũ = д(ũ1, . . . , ˜um) for some constructor д. Then θ̃ = {v 7→ u}. If v ∈ x then pick some constructor
f , д (because we assume there exists an infinite number of constructor symbols, we can always do it).
Take τ ≜ {v 7→ f (z1, . . . , zn) | zi ∈ V }. Then vτσ = f (t̃ ′1, . . . ,

˜t ′n) and ũτσ = д(ũ ′
1, . . . ,

˜u ′
m), and thus

these terms are not equal. Ifv < x then take some x ∈ x . For some i it should be that x ∈ Vars(ũi). Given
σ consider σ (v), pick some s such that σ (v) , д(ũ1, . . . , ˜um){x 7→ s} (it can be done by the induction
on σ (v)). Then τ ≜ {x 7→ s}.

– t̃ = f (t̃1, . . . , ˜tn). Consider the cases for u:
∗ ũ = w for somew ∈ V . Then the proof proceeds in the same way as in the previous case.
∗ ũ = f (ũ1, . . . , ũn) (ũ cannot be equal to some constructor д , f by our assumption of unifiability
of terms). Then by our assumption t̃1 ≡ ũ1 ∧ · · · ∧ ˜tn ≡ ũn . For some i it should be the case that
x ⊆ dom(θ̃i) ∪

⋃
p∈codom(θ̃i)

Vars(p) where θi ≜ mgu(t̃i , ũi). By the induction for an arbitrary σ there
exists τ such that t̃iτσ , ũiτσ and thus t̃τσ , ũτσ .

■

□

4:12 • Evgenii Moiseenko

Given this lemma, we compute mgu(t ,u) in order to check the constraint ∀x∃y. t ≡ u. By mgu(t ,u) we can
construct an idempotent substitution θ that is also a unifier of t and u. We take θ̂ — a part of θ that does not bind
existentially quantified variables y. Then we check if θ̂ binds variables from x , or some term from codomain of θ̂
contains variables from x . If it does then the constraint is unsatisfiable, because in this case we can always pick
an assigment for x that will make the terms not unifiable. Otherwise it is satisfiable.

3.3 Extending the Search
In this section we describe how OCanren search interacts with negation. Also we finally present the code of
negation operator itself.

In OCanren (as in any typicalMiniKanren implementation) the search is implemented on top of backtracking
lazy stream monad [Kiselyov et al. 2005]. During the search the current state is maintained. The state contains
accumulated constraints plus some supplementary information stored in the environment (for example, the
identifier of last allocated variable). A goal is simply a function which takes a state and returns a lazy stream
of states. All logical primitives, such as individual constraints, conjunction, disjunction, and fresh variable
introduction, can be implemented based on this representation of goals (an interested reader may refer to [Hemann
and Friedman [n. d.]; Kiselyov et al. 2005]).
Now we can define the negation operator ¬ (see Listing 6). Let us describe it in details.

1 let (¬) g st =
2 let sts ′ = g st in
3 let cexs = Stream .map (diff st) sts ′ in
4 let sub ss cex =
5 let ss ′ = negate cex in
6 Stream .bind ss (fun s →

7 Stream .bind ss ′ (fun s ′ →

8 Stream .unit (merge s s ′)
9))
10 in
11 Stream .fold sub (Stream .unit st) cexs

Listing 6. Implementation of the negation operator

Negation operator is a function which takes a goal and returns a negated goal. Because a goal is itself a function
taking a state, (¬) takes two arguments: the goal g and the state st (line 1).

The first step of constructive negation is to run the positive version of the goal, as code in line 2 does. We run it
in the current state st and thus the call g st returns a stream of refined states sts ′ . Each state from this stream
will contain the constraints from the original state st as its subpart. However, we need to negate only constraints
originated from g solely. Thus, on the line 3 we map every state from the stream sts ′ to its difference with respect
to the original substitution st. In order to compute difference of two states st and st ′ (Listing 7), given that st
is more general that st ′ we need to compute difference of their substitutions and disequality constraints stores.
The difference of substitution s ′ with respect to s (Listing 8) is just a substitution containing all mappings from
s ′ which are not simultaneously in s. The difference of constraint store c ′ with respect to c is a constraint store

Constructive Negation for MiniKanren • 4:13

containing all disequalities that are in c ′ but not in c (Listing 8). As long as persistent data structures are used to
implement substitutions and constraint stores, the diff can be computed4.
Line 4 defines auxiliary function sub which takes two arguments: a stream of states ss and some state cex,

and returns another stream. The purpose of this function it to “subtract” cex from every element of ss. It is done
as follows. First, the state cex is negated as described in section 3.1 (line 5). As we have seen, as a result of the
negation of a single state the stream of states (the disjunction of formulas) can be obtained. Thus the result of
the call negate cex is the stream of states ss ′ . For every combination of some state s from the given stream
ss (line 6) and some state s ′ from the stream ss ′ representing the result of negation (line 7) we compute their
conjunction (line 8). The conjunction of two states is computed by the function merge (Listings 7, 8).

Finally, on the line 11 fold is called on the stream cexs, which is a stream of answers for the positive version
of the goal g, with function sub defined above and the initial accumulator Stream .unit st. The function
Stream .fold is implemented as a regular left fold over a possibly infinite list. Intuitively with folding over stream
cexs we “subtract” from the original state st every answer obtained from the goal g.

4 In the Listing 8 we present a simple representation of the constraint store as a list of substitutions. In the actual implementation, we use
more sophisticated representation, that also provides the diff function. The simpler version presented here gives some intuition on how to
implement diff for the constraint stores.

4:14 • Evgenii Moiseenko

module State = struct
type t = Env .t ∗ Subst .t ∗ CStore .t

. . .

let diff (e , s , cs) (e ′ , s ′ , cs ′) =
let e = Env .diff e e ′ in
let s = Subst .diff s s ′ in
let cs = CStore .diff cs cs ′ in
(e , s , cs)

let merge (e , s , cs) (e ′ , s ′ , cs ′) =
let e = Env .merge e e ′ in
match Subst .merge s s ′ with
| None → None

| Some s →

let cs = CStore .merge cs cs ′ in
match CStore .recheck s cs with
| None → None

| Some cs → (e , s , cs)
end

Listing 7. Implementation of the auxiliary functions

module VarMap = Map .Make (Var)

module Subst = struct
(* Substitution is a mapping from variables to terms *)

type t = Term .t VarMap .t
. . .

let diff s s ′ =
VarMap .fold (fun v t a →

if not (VarMap .mem v s) then
VarMap .add v t a

else a

) s ′ VarMap .empty

let merge s s ′ =
VarMap .fold (fun v t → function

| None → None

| Some a → unify a v t

) s ′ (Some s)
end

module CStore = struct
(* Constraint store is a list of substitutions *)

type t = Subst .t list

. . .

(* cs ′ must be obtained from cs by

* the addition of new constraints

*)

let diff cs cs ′ =
if cs ′ = cs then []
else
match cs ′ with
| _ : : cs ′ → diff cs cs ′

(* cs ′ = [] implies cs = [] *)

| _ → assert false

let merge cs cs ′ =
List .append cs ′ cs

end

Listing 8. Implementation of the auxiliary functions

Constructive Negation for MiniKanren • 4:15

3.4 Stratification
A negation, when combined with recursion, might become a source of confusion for a programmer. Consider the
program in Listing 9. It encodes a two-players game. The positions in the game are given as single-character
strings ′a ′ , ′b ′ , ′c ′ and ′d ′ . A binary relation move encodes the game field as the set of possible moves. An
unary relation winning determines the set of winning positions, meaning that if the first player starts from some
winning position, by making “good” moves the player has an opportunity to win the game. According to the
definition of winning, the position is winning if there exists a move from this position to some non-winning
position. Clearly, every position with no moves from it is losing.
Given the suchlike definition of winning, there is no doubt, that the position ′d ′ is losing position, and thus

the goal winning ′d ′ should fail, which, in turn, means that winning ′c ′ should succeed. However, whether
the goal winning ′a ′ (or winning ′b ′) should fail or succeed is not clear.

let move x y =
(x , y) ≡ (′a ′ , ′b ′) ∨

(x , y) ≡ (′b ′ , ′a ′) ∨

(x , y) ≡ (′b ′ , ′c ′) ∨

(x , y) ≡ (′c ′ , ′d ′)

let winning x =
fresh (y) (

(move x y) ∧ ¬(winning y)
)

Listing 9. Encoding of two-players game

The problem with the semantics of program in Listing 9, originates from the interaction of negation and
recursion. Definition of the relation winning refers to itself under negation. Logic programs that have this
property are called non-stratified [Przymusinski 1989]. Vice versa, programs that do not have loops over negation,
are called stratified.

Our current implementation handles only stratified programs. We leave the task of supporting non-stratified
programs as a direction for future work.

4 EVALUATION
In this section, we present an evaluation of implemented constructive negation on a series of examples.

4.1 If-then-else
Using relational if-then-else operator, presented in section 2.1, we have implemented several higher-order relations
over lists, namely find (Listing 10), remove5 (Listing 11) and filter (Listing 12). These relations are almost
identical (syntactically) to their functional implementations. We have tested that these relations can be run in
various directions and produce the expected results. For example, the goal filter p q q with the predicate p
equal to

fun l → fresh (x) (l ≡ [x])

stating that the given list should be a singleton list, starts to generate all singleton lists. Vice versa, the goal
filter p q [] with that same p generates all lists, constrained to be not a singleton list.
5Note, this implementation differs from the one in Section 1, but it is easy to see that these two are semantically equivalent.

4:16 • Evgenii Moiseenko

Listings 13-16 give more concrete examples of queries to these relations. In the listing the syntax run n q g
means running a goal gwith the free variable q taking the first n answers (“∗” denotes all answers). After the sign{
the result of the query is given. The result failmeans that the query has failed. The result succ {{ a1 }; ... {an }}
means that the query has succeeded delivering n answers. Each answer represents a set of constraint on free
variables. Constraints are of two forms: equality constraints, e.g. q = (1, _ . 0), or disequality constraints, e.g.
q , (1, _ . 0). The terms of the form _ . i in the answer denote some universally quantified variables.

let find p e xs =
fresh (x xs ′ ys ′) (
xs ≡ x : : xs ′ ∧

ifte (p x)
(e ≡ x)
(find p e xs ′)

)

Listing 10. A definition of find
relation

let remove p xs ys =
(xs ≡ [] ∧ ys ≡ [])
∨

fresh (x xs ′ ys ′) (
xs ≡ x : : xs ′ ∧

ifte (p x)
(ys ≡ xs ′)
(ys ≡ x : : ys ′ ∧

remove p xs ′ ys ′)
)

Listing 11. A definition of remove
relation

let filter p xs ys =
(xs ≡ [] ∧ ys ≡ [])
∨

fresh (x xs ′ ys ′) (
xs ≡ x : : xs ′ ∧

(ifte (p x)
(ys ≡ x : : ys ′)
(ys ≡ ys ′)) ∧

filter p xs ′ ys ′

)

Listing 12. A definition of filter
relation

let p l = fresh (x) (l ≡ [x])

Listing 13. Definition of the predicate p

run 3 q (fresh (e) find p e q)
{ succ {

{ q = [_ . 0] : : _ . 1 }
{ q = _ . 0 : : [_ . 1] : : _ . 2 ;

_ . 0 , [_ . 3] }
{ q = _ . 0 : : _ . 1 : : [_ . 2] : : _ . 3 ;

_ . 0 , [_ . 4] ; _ . 1 , [_ . 5] }
}

Listing 14. Example of queries to find

run ∗ q (fresh (e) remove p q [[]])
{ succ {

{ q = [[_ . 0] ; []] }
{ q = [[]] }
{ q = [[] ; [_ . 0]] }

}

run 3 q (fresh (e) remove p q q)
{ succ {

{ q = [] }
{ q = [_ . 0] , _ . 0 , [_ . 1] }
{ q = [_ . 0 ; _ . 1] ;

_ . 0 , [_ . 2] ; _ . 1 , [_ . 3] }
}

Listing 15. Example of queries to remove

Constructive Negation for MiniKanren • 4:17

run 3 q (filter p q q)
{ succ {

{ q = [] }
{ q = [_ . 0] }
{ q = [_ . 0 ; _ . 1] }

}

run 3 q (filter p q [1])
{ succ {

{ q = [[1]] }
{ q = [_ . 0 ; [1]] ; _ . 0 , [_ . 1] }
{ q = [[1] ; _ . 0] ; _ . 0 , [_ . 1] }

}

run 3 q (filter p q [])
{ succ {

{ q = [] }
{ q = [_ . 0] ; _ . 0 , [_ . 1] }
{ q = [_ . 0 ; _ . 1] ;

_ . 0 , [_ . 2] ; _ . 1 , [_ . 3] }
}

Listing 16. Example of queries to filter

4.2 Universal quantification
In the Section 2.2 we presented the forall goal constructor which is implemented through the double negation.
We have observed, that although forall g does not terminate when the goal g x has an infinite number of
answers (assuming x is a fresh variable), it does terminate in the case when g x has a finite number of answers.
The behavior of forall in this case is sound even in the presence of disequality constraints or nested quantifiers.

The Table 1 gives some concrete examples. The left column contains the tested goals6 and the right column
gives the obtained results. For the results we use the same notation as in the previous section.

5 LIMITATIONS AND FUTURE WORK
In this section we discuss the limitations of constructive negation in general and our implementation in particular.
Also we consider possible directions for future work.

5.1 Type Constraints
Although the program written in OCanren typechecks statically (thus, for example, preventing the user from
unifying two terms of distinct types), at runtime the type information is erased. In the presence of even regular
disequality constraints it can lead to the incorrect results. As an example, consider the following program:

6 We typeset the goals in terms of first-order logic syntax instead of OCanren syntax for brevity and clarity.

4:18 • Evgenii Moiseenko

∀x . x = q fail

∀x . ∃y. x = y succ {[q = _.0]}

∀x . ∃y. x = y ∧ y = q fail

∀x .q = (1,x) fail

∀x . ∃y.y = (1,x) succ {[q = _.0]}

∀x . ∃y. x = (1,y) fail

∀x . x , q fail

∀x . ∃y. x , y succ {[q = _.0]}

∀x . ∃y. x , y ∧ y = q fail

∀x .q , (1,x) succ {[q , (1, _.0)]}

(∃x .q = (1,x)) ∧ (∀x .q , (1,x)) fail

∀x . (x ,x) , (0, 1) succ {[q = _.0]}

∀x . (x ,x) , (1, 1) fail

∀x . (x ,x) , (q, 1) succ {[q , 1]}

∃a b .q = (a,b) ∧ ∀x . (x ,x) , (a,b) succ {[q = (_.0, _.1); _.0 , _.1]}

Table 1. forall evaluation

type bool = true | false

let g =
fresh (x y z : bool) (

(x . y)
(y . z)
(z . x)

)
The goal g states that there exists at least three different non-equal terms of type bool, which, as we know, is

not true. Yet the query run g will succeed.
In order to prevent unsoundness in cases like this, type information in the form of type constraints should be

somehow attached to the variables at runtime. The satisfiability of type constraints then should be rechecked
each time when the new disequality is added to some variable. An extension of OCanren with type constraints
is a direction for future work.

Constructive Negation for MiniKanren • 4:19

5.2 Non-stratified Programs
As we have already discussed in the section 3.4 our current implementation handles only stratified logic programs.
One of the possible extensions is to support non-stratified programs, such as one given in Listing 9, with respect
to well-founded and/or stable model semantics (see section 6 for the details).

5.3 Negation of Goals With an Infinite Number of Answers
Consider the following program:

let zeros l =
l ≡ [0]
∨

fresh (l ′) (
(l ≡ 0 : : l ′)
(zeros l ′)

)
The unary relation zeros defines lists consisting of zeros. Now, intuitively, the query run ¬(zeros q) should

enumerate all lists that are not built out of zeros only. Yet this query will fail to deliver even a single answer.
Why? Consider its operational behavior. First the positive version of the goal, that is zeros q, should be executed.
Then all answers to this goal should be collected and complemented. However, there is an infinite number of
answers to zeros q and thus this process will never terminate.
It is a significant drawback of constructive negation that the negation of the goal cannot be computed if the

goal has an infinite number of answers. This limitation cannot be avoided in general, however in some cases
it is possible to narrow the number of answers to some subgoal by the reordering of surrounding subgoals.
For example, the query run ¬(zeros q) ∧ (q ≡ [1]) can be executed in finite time by the reordering of
conjuncts. It seems that the best strategy is to delay negative subgoals as long as possible, but we do not have a
formal proof of that.

6 RELATED WORKS
There are two directions of work in the process of incorporating negative reasoning in the logic programming:
the first considers the semantics of negation, and the second is focused mainly on implementation aspects.
The first attempt to give a semantics for negation in logic programming was done by Clark [Chan 1988;

Clark 1978] with his completion semantics. It was then realized, that Clark’s semantics has various draw-
backs [Van Gelder et al. 1991].
Przymusinski [Przymusinski 1989] has studied the semantics of stratified logic programs. He introduced the

notion of perfect model semantics for such programs. Stratified logic programs have a variety of good properties,
including the property that each stratified program has a unique minimal model.
In an attempt to extend the semantics of negation to non-stratified programs the well-founded semantics was

proposed [Van Gelder et al. 1991]. However, this semantics is three-valued, meaning that for some queries it can
return answer unknown. For example, given the relation winning (section 3.4, listing 9), queries winning ′a ′

and winning ′b ′ would return unknown.
An alternative approach is stable model semantics [Gelfond and Lifschitz 1988]. Under this semantics, non-

stratified logic program can have several stable models. Program, that defines winning, has two stable models,
in one of these models goal winning ′a ′ succeeds and winning ′b ′ fails, in the other winning ′a ′ fails and
winning ′b ′ succeeds. Logic programming under stable model semantics is also known under the name answer
set programming (ASP).

4:20 • Evgenii Moiseenko

The works [Dovier et al. 2000; Stuckey 1991] are theoretical studies of constructive negation in the context of
constraint logic programming. They give a necessary and sufficient condition for the constraint structures that
are compatible with constructive negation. Namely, the constraint structure should be admissible closed.
From an implementation side, Chen et al. [Chen et al. 1995; Chen and Warren 1996] developed a Prolog

system based on SLG resolution, which is sound with respect to well-founded semantics. However, they used
negation as failure with delaying of non-ground negative subgoals. [Liu et al. 1999] is an extension of this system
with the support of the constructive negation. Works [Álvez et al. 2004; Barták 1998] implement a constraint
logic programming systems with the support of constructive negation. Yet, as with our implementation, the
constructive negation in these systems supports only equality and disequality constraints over first-order terms.
We are not aware of any practical implementation that is parametric over arbitrary admissible closed constraint
structures.

Many tools were developed to compute stable models of logic programs, among them are [Gebser et al. 2007;
Giunchiglia et al. 2006]. These systems usually require to perform grounding of logic program. The problem of
finding stable models of ground logic program then is encoded as propositional formula and solved by some
SAT solver. Unfortunately, some logic programs do not have finite grounding, but even if a program has it,
grounding may cause an exponential blow-up. Recently, a goal-directed system for computing stable models was
developed [Arias et al. 2018; Marple et al. 2012, 2017]. To the best of our knowledge, it is the only ASP system, that
does not require grounding. The key components of this system are the usage of tabling, constructive negation,
coinductive logic programming, and non-monotonic reasoning check. It is an interesting and challenging task to
extend MiniKanren with the support of stable model semantics in the spirit of this line of work.

7 CONCLUSION
We have presented an implementation of constructive negation for relational programming language OCanren,
a dialect of MiniKanren. Unlike the negation as failure, constructive negation is consistent with the pure logical
nature of MiniKanren. As we have demonstrated the negative reasoning increases the expressive power of
relational language by allowing to compose more relations in a natural and intuitive form.

ACKNOWLEDGMENTS
We want to thank Dmitry Boulytchev, Ekaterina Verbitskaia and anonymous reviewers for valuable comments
on a draft version of the paper. This work was partially supported by the grant 18-01-00380 from the Russian
Foundation for Basic Research and the grant from JetBrains Research.

REFERENCES
Javier Álvez, Paqui Lucio, and Fernando Orejas. 2004. Constructive negation by bottom-up computation of literal answers. In Proceedings of

the 2004 ACM symposium on Applied computing. ACM, 1468–1475.
Joaquin Arias, Manuel Carro, Elmer Salazar, Kyle Marple, and Gopal Gupta. 2018. Constraint answer set programming without grounding.

Theory and Practice of Logic Programming 18, 3-4 (2018), 337–354.
Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT press.
Roman Barták. 1998. Constructive negation in clp (h). submitted to CP 98 (1998).
William E Byrd. 2010. Relational programming in miniKanren: techniques, applications, and implementations. (2010).
David Chan. 1988. Constructive negation based on the completed database. In Proc. of ICLP-88.
Weidong Chen, Terrance Swift, and David S Warren. 1995. Efficient top-down computation of queries under the well-founded semantics. The

Journal of logic programming 24, 3 (1995), 161–199.
Weidong Chen and David S Warren. 1996. Tabled evaluation with delaying for general logic programs. Journal of the ACM (JACM) 43, 1

(1996), 20–74.
Keith L Clark. 1978. Negation as failure. In Logic and data bases. Springer, 293–322.
Agostino Dovier, Enrico Pontelli, and Gianfranco Rossi. 2000. A necessary condition for constructive negation in constraint logic programming.

Inform. Process. Lett. 74, 3-4 (2000), 147–156.

Constructive Negation for MiniKanren • 4:21

Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov. 2005. The Reasoned Schemer. The MIT Press.
Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. 2007. clasp: A conflict-driven answer set solver. In International

Conference on Logic Programming and Nonmonotonic Reasoning. Springer, 260–265.
Michael Gelfond and Vladimir Lifschitz. 1988. The stable model semantics for logic programming.. In ICLP/SLP, Vol. 88. 1070–1080.
Enrico Giunchiglia, Yuliya Lierler, and Marco Maratea. 2006. Answer set programming based on propositional satisfiability. Journal of

Automated Reasoning 36, 4 (2006), 345.
Jason Hemann and Dan Friedman. [n. d.]. µkanren: A minimal functional core for relational programming, November 2013. URL

http://www.schemeworkshop.org/2013/papers/HemannMuKanren2013.pdf ([n. d.]).
Oleg Kiselyov, Chung-chieh Shan, Daniel P Friedman, and Amr Sabry. 2005. Backtracking, interleaving, and terminating monad transform-

ers:(functional pearl). ACM SIGPLAN Notices 40, 9 (2005), 192–203.
Dmitry Kosarev and Dmitry Boulytchev. 2018. Typed embedding of a relational language in OCaml. arXiv preprint arXiv:1805.11006 (2018).
Ramana Kumar andMichael Norrish. 2010. (Nominal) unification by recursive descent with triangular substitutions. In International Conference

on Interactive Theorem Proving. Springer, 51–66.
Julie Yuchih Liu, Leroy Adams, and Weidong Chen. 1999. Constructive negation under the well-founded semantics. The Journal of Logic

Programming 38, 3 (1999), 295–330.
Kyle Marple, Ajay Bansal, Richard Min, and Gopal Gupta. 2012. Goal-directed execution of answer set programs. In Proceedings of the 14th

symposium on Principles and practice of declarative programming. ACM, 35–44.
Kyle Marple, Elmer Salazar, Zhuo Chen, and Gopal Gupta. 2017. The s (ASP) Predicate Answer Set Programming System. The Association for

Logic Programming Newsletter (2017).
Dale Miller and Gopalan Nadathur. 2012. Programming with higher-order logic. Cambridge University Press.
Lee Naish. 1995. Pruning in logic programming. In University of Melbourne. Citeseer.
Teodor C Przymusinski. 1989. On constructive negation in logic programming. MIT Press Cambridge, Massachusetts.
John Alan Robinson et al. 1965. A machine-oriented logic based on the resolution principle. J. ACM 12, 1 (1965), 23–41.
Peter J Stuckey. 1991. Constructive negation for constraint logic programming. In [1991] Proceedings Sixth Annual IEEE Symposium on Logic

in Computer Science. IEEE, 328–339.
Allen Van Gelder, Kenneth A Ross, and John S Schlipf. 1991. The well-founded semantics for general logic programs. Journal of the ACM

(JACM) 38, 3 (1991), 619–649.

	Abstract
	1 Introduction
	2 Motivating Examples
	2.1 Relational If-then-else
	2.2 Classical Implication and Universal Quantification
	2.3 Graph Unreachability Problem
	2.4 Unreachability in Labeled Transition Systems

	3 Implementation
	3.1 General Ideas
	3.2 Constraint Solver, Formally
	3.3 Extending the Search
	3.4 Stratification

	4 Evaluation
	4.1 If-then-else
	4.2 Universal quantification

	5 Limitations and Future Work
	5.1 Type Constraints
	5.2 Non-stratified Programs
	5.3 Negation of Goals With an Infinite Number of Answers

	6 Related Works
	7 Conclusion
	Acknowledgments
	References

