
Relational Interpreters for Search Problems∗

PETR LOZOV, EKATERINA VERBITSKAIA, and DMITRY BOULYTCHEV, Saint Petersburg State
University, Russia and JetBrains Research, Russia

We address the problem of constructing a solver for a certain search problem from its solution verifier. The main idea behind
the approach we advocate is to consider a verifier as an interpreter which takes a data structure to search in as a program
and a candidate solution as this program’s input. As a result the interpreter returns “true” if the candidate solution satisfies
all constraints and “false” otherwise. Being implemented in a relational language, a verifier becomes capable of finding a
solution as well. We apply two techniques to make this scenario realistic: relational conversion and supercompilation. Relational
conversion makes it possible to convert a first-order functional program into relational form, while supercompilation (in the
form of conjunctive partial deduction (CPD)) — to optimize out redundant computations. We demonstrate our approach on a
number of examples using a prototype tool for OCanren — an implementation of miniKanren for OCaml, — and discuss the
results of evaluation.

CCS Concepts: • Software and its engineering→ Constraint and logic languages; Source code generation;

Additional Key Words and Phrases: relational programming, relational interpreters, search problems

1 INTRODUCTION

Verifying a solution for a problem is much easier than finding one — this common wisdom can be confirmed by
anyone who used both to learn and to teach. This observation can be justified by its theoretical applications, thus
being more than informal knowledge. For example, let us have a language L. If there is a predicate VL such that

∀ω : ω ∈ L ⇐⇒ ∃pω : VL(ω,pω)

(with pω being of size, polynomial on ω) and we can recognize VL in a polynomial time, then we call L to be in
the class NP [Garey and Johnson 1990]. Here pω plays role of a justification (or proof) for the fact ω ∈ L. For
example, if L is a language of all hamiltonian graphs, then VL is a predicate which takes a graph ω and some
path pω and verifies that pω is indeed a hamiltonial path in ω. The implementation of the predicate VL , however,
tells us very little about the search procedure which would calculate pω as a function of ω. For the whole class of
NP-complete problems no polynomial search procedures are known, and their existence at all is a long-standing
problem in the complexity theory.

There is, however, a whole research area of relational interpreters, in which a very close problem is addressed.
Given a language L, its interpreter is a function evalL which takes a program pL in the language L and an
input i and calculates some output such that

evalL(p
L , i) = ⟦pL⟧L (i)

∗This work was partially suppored by the grant 18-01-00380 from The Russian Foundation for Basic Research

Authors’ address: Petr Lozov, lozov.peter@gmail.com; Ekaterina Verbitskaia, kajigor@gmail.com; Dmitry Boulytchev, dboulytchev@math.
spbu.ru, Saint Petersburg State University, Russia , JetBrains Research, Russia.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

© 2019 Copyright held by the author(s).
miniKanren.org/workshop/2019/8-ART3

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

3:2 • Petr Lozov, Ekaterina Verbitskaia, and Dmitry Boulytchev

where ⟦•⟧L is the semantics of the language L. In these terms, a verification predicate VL can be considered
as an interpreter which takes a program ω, its input pω and returns true or false . A relational interpreter is an
interpreter which is implemented not as a function evalL , which calculates the output from a program and its
input, but as a relation evalo

L
which connects a program with its input and output. This alone would not have

much sense, but if we allow the arguments of evalo
L
to contain variables we can consider relational interpreter

as a generic search procedure which determines the values for these variables making the relation hold. Thus,
with relational interpreter it is possible not only to calculate the output from an input, but also to run a program
in an opposite “direction”, or to synthesize a program from an input-output pair, etc. In other words, relational
verification predicate is capable (in theory) to both verify a solution and search for it.

Implementing relational interpreters amounts to writing it in a relational language. In principle, any conven-
tional language for logic programming (Prolog [Clocksin and Mellish 2003], Mercury [Somogyi et al. 1996], etc.)
would make the job. However, the abundance of extra-logical features and the incompleteness of default search
strategy put a number of obstacles on the way. There is, however, a language specifically designed for pure rela-
tional programming, and, in a narrow sense, for implementing relational interpreters — miniKanren [Friedman
et al. 2005]. Relational interpreters, implemented in miniKanren, demonstrate all their expected potential: they
can synthesize programs by example, search for errors in partially defined programs [Byrd et al. 2017], produce
self-evaluated programs [Byrd et al. 2012], etc. However, all these results are obtained for a family of closely
related Scheme-like languages and require a careful implementation and even some ad-hoc optimizations in the
relational engine.
From a theoretical standpoint a single relational interpreter for a Turing-complete language is sufficient:

indeed, any other interpreter can be turned into a relational one just by implementing it in a language, for which
relational interpreter already exists. However, the overhead of additional interpretation level can easily make
this solution impractical. The standard way to tackle the problem is partial evaluation or specialization [Jones
et al. 1993]. A specializer specM for a languageM for any program pM in this language and its partial input i
returns some program which, being applied to the residual input x , works exactly as the original program on
both i and x :

∀x : ⟦specM (pM , i)⟧M (x) = ⟦pM⟧M (i,x).

If we apply a specializer to an interpreter and a source program, we obtain what is called the first Futamura
projection [Futamura 1971]:

∀i : ⟦specM (evalM
L
,pL)⟧M (i) = ⟦evalM

L
⟧M (pL , i).

Here we added an upper index M to evalL to indicate that we consider it as a program in the language M.
In other words, the first Futamura projection specializes an interpreter for a concrete program, delivering
the implementation of this program in the language of interpreter implementation. An important property
of a specializer is Jones-optimality [Jones et al. 1993], which holds when it is capable to completely eliminate
the interpretation overhead in the first Futamura projection. In our case M = miniKanren, from which we
can conclude that in order to eliminate the interpretation overhead we need a Jones-optimal specializer for
miniKanren. Although implementing a Jones-optimal specializer is not an easy task even for simple functional
languages, there is a Jones-optimal specializer for a logical language [Leuschel et al. 2004], but not forminiKanren.

The contribution of this paper is as follows:
• We demonstrate the applicability of relational programming and, in particular, relational interpreters for
the task of turning verifiers into solvers.

• To obtain a relational verifier from a functional specification we apply relational conversion [Byrd 2009;
Lozov et al. 2018] — a technique which for a first-order functional program directly constructs its relational
counterpart. Thus, we introduce a number of new relational interpreters for concrete search problems.

Relational Interpreters for Search Problems • 3:3

• We employ supercompilation in the form of conjunctive partial deduction (CPD) [De Schreye et al. 1999] to
eliminate the redundancy of a generic search algorithm caused by partial knowledge of its input.

• We give a number of examples and perform an evaluation of various solutions for the approach we address.
Both relational conversion and conjunctive partial deduction are done in an automatic manner. The only thing

one needs to specify is the known arguments or the execution direction of a relation.
As concrete implementation of miniKanrenwe use OCanren [Kosarev and Boulytchev 2016] — its embedding

in OCaml; we use OCaml to write functional verifiers; our prototype implementation of conjunctive partial
deduction is written in Haskell.
The paper is organized as follows. In Section 2 we give a complete example of solving a concrete problem —

searching for a path in a graph, — with relational verifier. Section 3 recalls the cornerstones of relational
programming in miniKanren and the relational conversion technique. In Section 4 we describe how conjunctive
partial deduction was adapted for relational programming. Section 5 presents the evaluation results for concrete
solvers built using the technique in question. The final section concludes.

2 SEARCHING FOR PATHS IN A GRAPH WITH A RELATIONAL VERIFIER

In this section we demonstrate how to solve a concrete problem of searching for paths in a directed graph with a
relational verifier. A directed graph is a tuple (N ,E, start , end), where N is a finite set of nodes, E is a finite set of
edges, functions start , end : E → N return a start and an end nodes for a given edge respectively. A path in a
directed graph is a sequence:

⟨n0, e0,n1, e1, . . . ,nk , ek ,nk+1⟩

such that
∀i ∈ {0 . . .k} : ni = start (ei) and ni+1 = end (ei).

The problem of searching for paths in a graph is to find a set {p | p is a path in д}, where д is a graph. There are
many concrete algorithms which search for paths in a graph. Implementing any of them involves determining in
which way to traverse the graph, how to ensure one does not get stuck exploring a cycle in the graph (a cycle
is a path in the graph of form ⟨n0, e0, . . . ,nk , ek ,n0⟩), how to ensure one path is not processed multiple times,
and so on. A much easier task is to implement a simple verifier, which checks if a sequence is indeed a path in a
graph, and generate the path searching routine from it by the relational conversion.

Below is the implementation of the verifier “isPath”. This function takes as an input a list of nodes “ns” and
a graph “g”. We represent the graph as a list of edges, stipulating there are no parallel edges. Each edge e is
represented as a pair of nodes (n,m), where n = start(e),m = end(e). Given ns = [n0, . . . ,nk+1] and a graph
д = [e0, . . . , el], the function returns true, if ∃i0 . . . ik such that ⟨n0, ei0 ,n1, ei1 , . . . , eik ,nk+1⟩ is a path in д.

1 let rec isPath ns g =
2 match ns with
3 | x1 : : x2 : : xs → elem (x1 , x2) g && isPath (x2 : : xs) g

4 | [_] → true

The function “elem” checks if an edge “e” exists in the graph “g”. We omit the definition of equality check for
edges “eq”, since it is trivial to implement and is not relevant for the example.

let rec elem e g =
match g with
| [] → false
| x : : xs → if eq e x then true else elem e xs

3:4 • Petr Lozov, Ekaterina Verbitskaia, and Dmitry Boulytchev

We stipulate that a path must include at least two nodes, since searching for shorter paths is trivial. Line 3
of the “isPath” definition checks that the first two nodes of the list form an edge of the graph. Then it checks
that what is left after deleting the first node from the list is still a path in the graph. Line 4 may come off a little
counterintuitive, since it states that a path which includes a single arbitrary node is in the input graph. However
we only execute this branch by a recursive call of “isPath”, which only happens after we have already ensured
with the call to the “elem” function that the said node is in the graph.

The relational conversion of the verifier function “isPath” generates a relation “isPatho” defined for a path
“ns”, a graph “g” and a boolean value “res”, which is true if “ns” is a path in the graph “g” and false otherwise. The
function “elem” is transformed into a relation “elemo” defined for an edge “e”, a graph “g” and a boolean value
“res”, which is true if “e” is an edge in the graph “g” and false otherwise. The result of the relational conversion
of the functions “isPath” and “elem” is presented below.

5 let rec elemo e g res = conde [
6 (g ≡ nil () ∧ res ≡ ↑false) ;
7 (fresh (x xs resEq) (
8 (g ≡ x % xs) ∧

9 (eqo e x resEq) ∧

10 (conde [
11 (resEq ≡ ↑true ∧ res ≡ ↑true) ;
12 (resEq ≡ ↑false ∧ elemo e xs res)])))]
13
14 let rec isPatho ns g res = conde [
15 (fresh (el) (
16 (ns ≡ el % nil ()) ∧

17 (res ≡ ↑true)) ;
18 (fresh (x1 x2 xs resElem resIsPath) (
19 (ns ≡ x1 % (x2 % xs)) ∧

20 (elemo (pair x1 x2) g resElem) ∧

21 (isPatho (x2 % xs) g resIsPath) ∧

22 (conde [
23 (resElem ≡ ↑false ∧ res ≡ ↑false) ;
24 (resElem ≡ ↑true ∧ res ≡ resIsPath)])))]

Here we use the syntax of OCanren. A new relation is defined as a recursive function with the keywords
“ let rec”. The body of the relation is a goal created with the following goal constructors.

• Disjunction д1 ∨д2, where д1,д2 — some goals. The two goals are evaluated independently and their results
are combined.

• Disjunction of goal list conde [д1; . . . ;дn], where д1; . . . ;дn — some goals.
• Conjunction д1 ∧ д2, where д1,д2 — some goals. The goal д2 is evaluated only if the evaluation of д1
succeeded; the evaluation of д2 uses the results of д1.

• Syntactic unification t1 ≡ t2, where t1, t2 — some terms. Unification is a basic goal constructor. If t1 and t2
can be unified, the goal is considered successful and failed otherwise.

• Relation call rnt1 . . . tn where rn is a name of some n-ary relation, and ti are terms.
• To introduce fresh variables into scope, one should use fresh (x) д, where x is a list of variable names.

Relational Interpreters for Search Problems • 3:5

Besides goal constructors we use some syntactic sugar for values and lists. “↑” is used to transform a value into
a logic value. The empty list is represented as “nil () ”, and to construct a new list from a value “h” and a list “t”
we use “h % t”. A tuple of “x” and “y” is created with “pair x y”.

Regrettably, this relational interpreter suffers from poor performance. Query “isPatho q <graph> true” for
path searching takes more than ten minutes even for graphs of 5 nodes. This is somewhat expected, considering
that the relational conversion generates a relation which can be used for many different queries, which is
excessive when any particular query is in question. This is, of course, not a desirable behaviour. Fortunately,
further transformation of the relation can improve the performance.
For example, if we consider a query “isPatho q <graph> ↑true”, we can simplify lines 18 through 24 of its

definition. First, we notice that, having “res” be equal to “↑true”, we can safely remove the disjunct in line 23,
after what the whole “conde” becomes unnecessary and can be removed. After moving the unifications for
“resElem” and “resIsPath” to the top level, we get the following equivalent definition of the “isPatho” relation.
Note, that the call to the “elemo” relation is done with the last argument being unified with “↑true”, so further
specialization is still possible.

25 let rec isPatho ns g res = conde [
26 (fresh (el) (
27 (ns ≡ el % nil ()) ∧

28 (res ≡ ↑true))) ;
29 (fresh (x1 x2 xs resElem resIsPath) (
30 (resElem ≡ ↑true) ∧

31 (resIsPath ≡ ↑true) ∧

32 (ns ≡ x1 % (x2 % xs)) ∧

33 (elemo (pair x1 x2) g resElem) ∧

34 (isPatho (x2 % xs) g resIsPath)))]

The specialized version of the relation is much more performant than the original one. Before, searching paths
of length 5 took more than 10 minutes while the specialized version finds paths of length 10 in the graph with
100 edges in a few seconds.

This transformation can be performed automatically with conjunctive partial deduction. The result of partially
deducing the “isPatho q p ↑true”, where “p” and “q” are fresh variables is about 40 lines of code long and it has
the same performance as the manually transformed relation. We omit the transformed program because of the
space concerns, but it can be found in the repository1.

3 RELATIONAL CONVERSION

In this section we describe how the relational conversion in the form of unnesting [Byrd 2009] is done. Unnesting
constructs a relational program by a first-order functional program.

First, a new variable for every subexpression is introduced with the let -expression. Then, all pattern matching
and if-expressions are translated into disjunctions, in which unifications are generated for the patterns. Free
variables are introduced into scope with the fresh . Every n-ary function becomes (n + 1)-ary relation with the
last argument unified with the result. As a final step, unifications are reordered with relation calls such that to be
computed as early as it is possible.

The example of unnesting is shown in Fig. 1. The input functional program is presented in Fig. 1a. The result
of introducing fresh variables for subexpressions is in Fig. 1b. The relational program before the conjuncts are
reordered is shown in Fig. 1c and the result of the unnesting is presented in Fig. 1d.
1https://github.com/Lozov-Petr/miniKanren-2019-Relational-Interpreters-for-Search-Problems

3:6 • Petr Lozov, Ekaterina Verbitskaia, and Dmitry Boulytchev

let rec append a b =
match a with
| [] → b

| x : : xs →

x : : append xs b

(a)

let rec append a b =
match a with
| [] → b

| x : : xs →

let q = append xs b in
x : : q

(b)

let rec appendo a b c =
(a ≡ [] ∧ b ≡ c) ∨

(fresh (x xs q) (
(a ≡ x : : xs) ∧

(appendo xs b q) ∧

(c ≡ x : : q))

(c)

let rec appendo a b c =
(a ≡ [] ∧ b ≡ c) ∨

(fresh (x xs q) (
(a ≡ x : : xs) ∧

(c ≡ x : : q) ∧

(appendo xs b q))

(d)

Fig. 1. Example of unnesting

Note, that the unnesting has limitations: it does not support higher-order functions and partial application.
A more general method of translation which does not impose the same limitations was developed [Lozov et al.
2018]. Unfortunately, it uses higher-order relations which are not currently supported in conjunctive partial
deduction, so we use unnesting.
The forward execution of the relation mimics the execution of the function from which it was constructed

by relational conversion. This makes forward execution quite efficient, to the detriment of the execution in the
backwards direction. The unnesting can be modified to improve the performance of backward execution. Let us
consider the conversion of a functional conjunction “f1 x1 && f2 x2”.

λ res →

fresh (p) (
(f1 x1 p) ∧

(conde [
(p ≡ ↑false ∧ res ≡ ↑false) ;
(p ≡ ↑true ∧ f2 x2 res)]))

Mimicking the function evaluation, the forward execution of this code first computes “f1 x1”. If it fails, then the
result “res” is unified with “ false ”, otherwise the second conjunct “f2 x2” is executed and its result is unified with
the result. This strategy is not efficient in the backward direction, when we know what “res” is. The following
relation is much more performant when executed in the backward direction:

λ res →

conde [
(res ≡ ↑false ∧ f1 x1 ↑false) ;
(f1 x1 ↑true ∧ f2 x2 res)]

In particular, if “res ≡ ↑true”, both conversions execute “f2 x2 res”, but when the first conversion computes
“f1 x1 p” with fresh “p”, the second executes “f1 x1 ↑true”. Using the second conversion is enough to significantly

Relational Interpreters for Search Problems • 3:7

increase the performance in the backward direction. For example, the path search takes several minutes if the
first conversion strategy is used, whereas it finishes in less than a second in the second case.
Choosing the second conversion strategy comes with a price for the forward execution. Instead of executing

“f1 x1 p”, where “p” is fresh, the second strategy executes both “f1 x1 ↑false” and “f1 x1 ↑true”. In the worst case
scenario, when the execution of “f1” does not depend on the last argument, it doubles the number of executions
of “f1”.

To sum up, by choosing different strategies of the relational conversion we can achieve significant performance
improvement. There is no single right way of doing the conversion which improves the performance of the
execution in every possible direction. Choosing a strategy per each relation and each direction manually is
not feasible, but it can be achieved with a fully-automatic program transformation, such as conjunctive partial
deduction.

4 CONJUNCTIVE PARTIAL DEDUCTION

Specialization [Jones et al. 1993] is a natural way to tackle the problem of redundant computations when a part of
the input is known. A fully-automatic specialization technique developed in the domain of logic programming is
called partial deduction [Komorowski 1982; Lloyd and Shepherdson 1991]. It is related to the supercompilation of
functional languages [Glück and Sørensen 1994; Turchin 1986]. The particular flavour of the partial deduction we
are interested in is called conjunctive partial deduction [De Schreye et al. 1999]. As opposed to the partial deduction,
conjunctive partial deduction handles conjunctions of atoms, thus being able to perform such optimizations
as tupling [Hu et al. 1997] and deforestation [Wadler 1988]. Below we demonstrate by example the features of
conjunctive partial deduction.

Deforestation is a program transformation which gets rid of intermediate data structures. The following example
demonstrates deforestation. Consider a goal “appendo xs ys ts ∧ appendo ts zs rs” (note the shared “ts”),
where “appendo x y xy” describes concatenation, “nil () ” constructs the empty list, and “h % t” constructs a
new list from the value “h” and another list “t” (similarly to “cons” in Scheme and “ :: ” in OCaml).

let rec appendo x y xy = conde [
(x ≡ nil () ∧ xy ≡ y) ;
(fresh (h t ty) (

(x ≡ h % t) ∧

(xy ≡ h % ty) ∧

(appendo t y ty)))]

This goal concatenates three lists: “xs”, “ys”, “zs”, constructing an intermediate list “ts”. During the execution
of this goal, elements of the list “xs” are examined twice: first when “ts” is constructed, and then when the result
“rs” is constructed. What is worse, “ts” is only constructed to be immediately deconstructed. Deforestation gets
rid of “ts” in this example.
A better program would be such that does not construct “ts” at all. Such a program be generated from the

original definition by conjunctive partial deduction and is shown below:

let rec doubleAppendo xs ys zs rs = conde [
(xs ≡ nil () ∧ appendo ys zs rs) ;
(fresh (h t ts) (

(xs ≡ h % t) ∧

(rs ≡ h % ts) ∧

(doubleAppendo t ys zs ts)))]

3:8 • Petr Lozov, Ekaterina Verbitskaia, and Dmitry Boulytchev

Conjunctive partial deduction is also capable of tupling. This transformation makes sure that the same data
structure is traversed once even if computing several results. The following example demonstrates such a case.

The goal “maxLengtho xs m l” computes both the maximum value of the list “xs” and its length. The elements
of the list are Peano numbers with “zero () ” as the zero and “succ” as the successor function. The third argument
“b” of the relation “leo x y b” is “↑true” if “x” is less or equal than “y”, and “↑ false ” otherwise. The relation
“gto x y b” is similar to “leo x y b”, but it checks for “x” to be greater than “y”.

let maxLengtho xs m l = maxo xs m ∧ lengtho xs l

let rec lengtho xs l = conde [
(xs ≡ nil () ∧ l ≡ zero ()) ;
(fresh (h t m) (
xs ≡ h % t ∧ l ≡ succ m ∧ lengtho t m))]

let maxo xs m = maxo1 xs (zero ()) m

let rec maxo1 xs n m = conde [
(xs ≡ nil () ∧ m ≡ n) ;
(fresh (h t) (
(xs ≡ h % t) ∧

(conde [
(leo h n ↑true ∧ maxo1 t n m) ;
(gto h n ↑true ∧ maxo1 t h m)])))]

let rec leo x y b = conde [
(x ≡ zero () ∧ b ≡ ↑true) ;
(fresh (x1) (
x ≡ succ x1 ∧ y ≡ zero () ∧ b ≡ ↑false)) ;

(fresh (x1 y1) (
x ≡ succ x1 ∧ y ≡ succ y1 ∧ leo x1 y1 b))]

let rec gto x y b = conde [
(x ≡ zero () ∧ b ≡ ↑false) ;
(fresh (x1) (
x ≡ succ x1 ∧ y ≡ zero () ∧ b ≡ ↑false)) ;

(fresh (x1 y1) (
x ≡ succ x1 ∧ y ≡ succ y1 ∧ gto x1 y1 b))]

Execution of the goal “maxLengtho xs m l” leads to “xs” being traversed twice. There is a way to rewrite the
program so that “xs” is traversed once, but this requires fusing together the definitions of “lengtho” and “maxo”,
which either restricts code reuse, or leads to code duplication. A better way is to only fuse the definitions when it
is needed, and do it automatically by employing tupling.
The desirable implementation of the “maxLengtho xs m l” relation is the following (the definitions of “gto”

and “leo” are left out for brevity). It can be achieved with conjunctive partial deduction as well:

Relational Interpreters for Search Problems • 3:9

let maxLengtho xs m l = maxLengtho1 xs m (zero ()) l

let rec maxLengtho1 xs m n l = conde [
(xs ≡ nil () ∧ m ≡ n ∧ l ≡ zero ()) ;
(fresh (h t l1)

(xs ≡ h % t) ∧

(l ≡ succ l1) ∧

(conde [
(leo h n ∧ maxLengtho1 t m n l) ;
(gto h n ∧ maxLengtho1 t m h l)]))]

4.1 CPD for Prolog-like languages

Initially, conjunctive partial deduction was developed for Prolog-like languages. Conjunctive partial deduction
partially evaluates goals, which are conjunctions of atoms, using two levels of control: local and global [Glück
et al. 1996]. The global control determines which atoms are to be partially deduced. The local control — what
the definitions for the atoms selected at the global control shall be. Both local and global control construct tree
structures which represent the input program.

Local control constructs finite SLD-trees for conjunctions of atoms. The construction is guided with an unfold
operator: it selects a literal from the leaf of the partially constructed SLD-tree and adds its resolvents as children
at each step. Since, in general, SLD-trees are infinite, a decision to stop unfolding should be made at some point.
There are several techniques for doing this, the most promising of them combine determinacy and either some
well-founded or well-quasi order, such as homeomorphic embedding, or other measures.

Global control determines the set of the conjunctions for which partial SLD-trees are built. The important goal
of the global control is to ensure termination. The termination is achieved with the abstraction. If there is a goal
which is embedded into the current goal, it points to the possibility of nontermination. The embedding tells that
there is a certain similarity between the two goals, and if a current goal keeps being processed, then their similar
subpart will appear again and again, causing nontermination. Whenever the embedding goals are detected, the
current goal is abstracted to remove the common subgoal from consideration.
When the partial deduction is done, the only thing left is to construct the residual program. The clauses are

generated from a partial SLD-tree, one tree per conjunction at the global level. A conjunction is uniquely renamed
to give a name for the predicate being defined. All free variables of the root of the tree become arguments of the
predicate. For each non-failing path in the SLD-tree a clause is generated: a substitution collected along the path
is substituted into the head of the clause, and the body is generated from what is in the leaf.

4.2 CPD for miniKanren

In this section we describe how we adapted conjunctive partial deduction for miniKanren. We describe the
particular unfolding and generalization strategies as well as discuss how the conjunctive partial deduction had to
be modified as a response to the differences between Prolog and miniKanren.

4.2.1 Local Control. Goals in miniKanren are different from those in Prolog-like languages: besides con-
junction, disjunction and relation calls, there are explicit unification and introduction of fresh variables. We
normalize the input goal so that it was a disjunction of conjunctions of relation calls. To do so, we first pop
all the fresh variables to the top level (“fresh (x) (p (x) ∧ fresh (y) (q (x) ∨ r (y , x))) ” becomes
“fresh (x y) (p (x) ∨ q (x) ∧ r (y , x)) ”). Then we transform the goal to be a disjuction of conjunctions
of relation calls or unifications. All unifications in each conjunction are evaluated to some substitution (or the

3:10 • Petr Lozov, Ekaterina Verbitskaia, and Dmitry Boulytchev

conjunct is discarded, if some unification fails). The normalization allows us to only consider conjunctions of
relation calls while doing conjunctive partial deduction.
The local control constructs the following tree structure which represents the goal:

type local_tree =
Fail

| Success of subst

| Leaf of goal list ∗ subst

| Disj of local_tree list

| Conj of local_tree ∗ goal list

Leaf nodes can be either “Fail”, “Success” or “Leaf”. The “Fail” node is created whenever the evaluation of
the current goal fails. When the current goal evaluates to some substitution, we create the “Success” node with
this substitution. The last leaf node is called “Leaf”, it corresponds to some partially evaluated goal. This type of
node contains a substitution which has been computed up to this point, and a residual goal. The goal in this type
of node is then examined at the global level.
“Disj” node corresponds to a disjunction in a goal: its children are the local control trees constructed for all

disjuncts. The last type of nodes is a “Conj” node. It is a transient node, which keeps track of a conjunction being
unfolded.
In general, unfolding replaces some of the relation calls with their bodies and partially evaluates them. The

particular unfolding strategy we adhere to is the following. At each step only one relation call is replaced
with its body: the leftmost selectable relation call. The selectable relation call is the one which does not embed
any of its predecessors — goals which were unfolded in order to get the current goal. Embedding here is the
modification of the homeomorphic embedding defined for the conjunctions of goals in conjunctive partial
deduction literature [De Schreye et al. 1999]. Since using pure embedding to control unfolding leads to hideously
big programs, we also allow only one non-deterministic unfold.

4.2.2 Global Control. The conjunctions in the “Leaf” nodes are processed at the global level. This step is
responsible for the termination of the transformation. Generally speaking, the danger for nontermination arises
whenever we encounter a subgoal which we have encountered before: processing the same thing will lead to
itself over and over again. To break the vicious circle, one needs to stop unfolding the encountered subgoal, this
is what abstraction serves for.

The simplest case here is when we come upon the goal which is equal up to variable renaming to any other goal
at the global level. When this happens, we stop exploring the goal. This is called variant check in the literature,
and it is done both at the global and the local control levels.
The more complicated case is when a subpart of the goal repeats. This case we test with the modification of

the homeomorphic embedding relation (strict homeomorphic embedding), initially developed for conjunctions. A
conjunction A is considered embedded into a conjunction B when there is an ordered subconjunction within A,
each conjunct of which is embedded into the corresponding conjunct of B:

A = A0 ∧A1 ∧ · · · ∧An ⊴ B0 ∧ B1 ∧ · · · ∧ Bm = B, if ∃{i0 . . . im | ∀j .i j < i j+1} : ∀j ∈ {0 . . .m}.Ai j ⊴ Bj

A single conjunct is embedded into another (Ai ⊴ Bj) when the following relation holds and Ai is not a strict
instance of the second one Bj :

X ⊴ Y ,where X and Y are variables

f (x0,x1, . . . ,xn) ⊴ f (y0,y1, . . . ,yn) ⇔ ∀i ∈ {0 . . .n}.xi ⊴ yi

f ⊴ д(y0,y1, . . .ym) ⇔ ∃i ∈ {0 . . .m}. f ⊴ yi

Relational Interpreters for Search Problems • 3:11

This check determines two major causes of the growth within the conjunctions. The conjunction can grow
in some argument of a relation call or the number of conjuncts itself can grow. To mitigate the first source of
the growth, the bigger conjunction can be replaced with a most specific generalization of the two conjunctions.
Otherwise we need to split the embedded subconjunction from the rest and start processing them separately.
This process called abstraction removes the subconjunctions which cause potential nontermination, and what is
left should indeed be processed further.

4.2.3 Residualization. After the transformation is finished, a residual program is constructed from the global
control tree. A relation definition is generated for each conjunction at the global level (this is done with the
renaming step of the original conjunctive partial deduction). First, a unique name is given for each conjunction.
Then free variables of the conjunction are collected to become the arguments of the relation: the constructors and
constants are omitted (for example “f x (succ y) ∧ g (zero ()) z” becomes “fG x y z”. The body of the
definition is generated from the local control tree which corresponds to the conjunction under consideration. The
body is formed as a disjunction of conjunctions for the non-failure nodes of the local control tree. A computed
substitution is transformed into a conjunction of unifications. Suitable definitions are chosen for a goal in a leaf,
and the conjunction of their applications is generated. As a final step we perform redundant argument filtering
as described in [Leuschel and Sørensen 1996], and introduce fresh variables where necessary.

5 EVALUATION

In this section we present an evaluation of the proposed approach. We have implemented several relational
interpreters for different search problems which can be found in the repository mentioned before. Some of the
simpler interpreters demonstrate good performance for different directions on their own and for them CPD
transformation is not needed. Thus, we will focus on two search problems which are more complex: searching
for a path in a graph and searching for a unifier [Baader and Snyder 2001] of two terms. For each problem we
compare four programs.
(1) The solver generated by the unnesting alone.
(2) The solver generated by the unnesting strategy aimed at backward execution.
(3) The solver generated by the unnesting and then specialized by conjunctive partial deduction for the

backward direction.
(4) The interpretation of the functional verifier with the relational interpreter implemented in Scheme [Byrd

et al. 2017].
First, let us compare the performance of the solvers for the path searching problem. The implementation of the

functional verifier for this problem is described in Section 2. We ran the search on a graph with 20 nodes and 30
edges, consequentially searching for paths of the length 5, 7, 9, 11, 13, and 15. We averaged the execution times
over 10 runs of the same query. We the limited the execution time by 300 seconds, and if the execution time of
some query exceeded the timeout, we put “>300s” in the result table and did not request the execution of queries
for longer paths. The results are presented in Table 1.

We can conclude that the execution time increases with the length of the path to search, which is expected, since
with the length of the path the number of the subpaths to be explored is increasing as well. The solver generated
by the unnesting alone and the interpretation with the relational intepreter demonstrate poor performance.
The first one is due to its inherently inefficient execution in backward direction, while the second suffers from
the interpretation overhead. Both the unnesting aimed at the backward execution and the solver automatically
transformed with conjunctive partial deduction show good performance. Conjunctive partial deduction performs
more thorough specialization, thus producing more efficient program.
Now let us consider the problem of finding a unifier of two terms which have free variables. A term

is either a variable (X ,Y , . . .) or some constructor applied to terms (nil , cons(H ,T), . . .). A substitution

3:12 • Petr Lozov, Ekaterina Verbitskaia, and Dmitry Boulytchev

Path length 5 7 9 11 13 15
Only conversion 0.01s 1.39s 82.13s >300s — —

Backward oriented conversion 0.01s 0.37s 2.68s 2.91s 4.88s 10.63s
Conversion and CPD 0.01s 0.06s 0.34s 2.66s 3.65s 6.22s
Scheme interpreter 0.80s 8.22s 88.14s 191.44s >300s —

Table 1. Searching for paths in the graph

Terms f(X, a) f(a % b % nil, c % d % nil, L) f(X, X, g(Z, t))
f(a, X) f(X % XS, YS, X % ZS) f(g(p, L), Y, Y)

Only conversion 0.01s >300s >300s
Backward oriented conversion 0.01s 0.11s 2.26s

Conversion and CPD 0.01s 0.07s 0.90s
Scheme interpreter 0.04s 5.15s >300s

Table 2. Searching for a unifier of two terms

maps a variable to a term. A unifier of two terms t and s is a substitution σ which equalizes them:
tσ = sσ by simultaneously substituting the variables for their images. For example, a unifier of the terms
cons(42,X) and cons(Y , cons(Y ,nil)) is a substitution {X 7→ cons(42,nil),Y 7→ 42}.

We implemented a functional verifier which checks if a substitution equalizes two input terms. We represent a
variable name as a unique Peano number. A substitution is represented as a list of terms, in which the index of the
term is equal to the variable name to which the term is bound, so the substitution {X 7→ cons(42,nil),Y 7→ 42} is
represented as a list “[cons (42, nil); 42]”. The verifier returns true if the input terms can be unified with the
candidate substitution and false otherwise.

As in the previous problem, we compare four solvers generated for the verifier described. With each solver, we
search for a unifier of two terms and compare the execution times. The time comparison is presented in Table 2.
The first two rows of each column contain two terms being unified. We use uppercase letters from the end of
the alphabet (X ,Y , . . .) to denote variables, lowercase letters from the beginning of the alphabet (a,b, . . .) to
denote constants (constructors with zero arguments), identifiers which start from the lowercase letter (f ,д, . . .)
to denote constructors.
Note, we compute a unifier for two terms, but not necessarily the most general unifier. We can implement

the most general unification in miniKanren, but achieving the comparable performance using relational ver-
ifiers requires additional check that the unifier is indeed the most general. We are currently working on the
implementation of such relational verifier.

Here four solvers compare to each other similarly to the previous problem: unnesting demonstrates the worst
execution time, relational interpretation in Scheme is a little better, while unnesting aimed at backward execution
and conjunctive partial deduction significantly improve the performance.
There exist pairs of terms, for which either of the solvers fails to compute a unifier under 300 seconds. The

example of such terms is “f (A ,B ,C ,A ,B ,C ,D) ” and “f (B ,C ,D ,x (R ,S), x (a ,T), x (Q ,b), x (a ,b)) ”. This is caused
by how general and declarative the verifier is: there is nothing in it to restrict the search space. We can modify
the verifier with the additional check to ensure that there are no bound variables in the candidate unifier. This
modification restricts the search space when there are many variables in the input terms. But it also changes the
semantics of the initial verifier and, as a consequence, the solvers: only idempotent unifiers can be found.

Relational Interpreters for Search Problems • 3:13

To sum up, we demonstrated by two examples that it is possible to create problem solvers from verifiers by
using relational conversion and conjunctive partial deduction. Currently conjunctive partial deduction improves
the performance the most, as compared to interpreting verifiers with Scheme relational interpreter or doing
relational conversion which is solely aimed at backward or forward execution.

6 CONCLUSION AND FUTURE WORK

We have presented a way to construct a solver for a search problem from its solution verifier by first doing a
relational conversion and then specializing the relation according to the desired execution direction by means of
conjunctive partial deduction.
There are a few directions for future work.
Even if we generate a relation optimized for the particular direction, executing it with miniKanren still carries

some overhead of interpretation. We believe that the best performance can be achieved by generating a functional
program from the relation optimized for the particular direction. This way we can avoid interpretation overhead
but still get the benefits of the approach. The second direction is to explore other specialization techniques besides
conjunctive partial deduction which are better suited for miniKanren programs.

REFERENCES

Franz Baader and Wayne Snyder. 2001. Handbook of Automated Reasoning. Elsevier Science Publishers B. V., Amsterdam, The Netherlands,
The Netherlands, Chapter Unification Theory.

William E. Byrd. 2009. Relational Programming in miniKanren: Techniques, Applications, and Implementations. Indiana University, Bloomington.
William E. Byrd, Michael Ballantyne, Gregory Rosenblatt, and Matthew Might. 2017. A Unified Approach to Solving Seven Programming

Problems (Functional Pearl). Proc. ACM Program. Lang. 1, ICFP, Article 8 (Aug. 2017), 26 pages. https://doi.org/10.1145/3110252
William E. Byrd, Eric Holk, and Daniel P. Friedman. 2012. miniKanren, Live and Untagged: Quine Generation via Relational Interpreters

(Programming Pearl). Workshop on Scheme and Functional Programming (2012).
William F. Clocksin andChristopher S.Mellish. 2003. Programming in Prolog (5 ed.). Springer, Berlin. https://doi.org/10.1007/978-3-642-55481-0
Danny De Schreye, Robert Glück, Jesper Jørgensen, Michael Leuschel, Bern Martens, and Morten Heine Sørensen. 1999. Conjunctive partial

deduction: Foundations, control, algorithms, and experiments. The Journal of Logic Programming 41, 2-3 (1999), 231–277.
Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov. 2005. The Reasoned Schemer. The MIT Press.
Yoshihiko Futamura. 1971. Partial evaluation of ccomputation process-an approach to a compiler-compiler. Systems, Compurters, Controls 25

(1971), 45–50.
Michael R. Garey and David S. Johnson. 1990. Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,

New York, NY, USA.
Robert Glück, Jesper Jørgensen, Bern Martens, and Morten Heine Sørensen. 1996. Controlling conjunctive partial deduction. In International

Symposium on Programming Language Implementation and Logic Programming. Springer, 152–166.
Robert Glück and Morten Heine Sørensen. 1994. Partial deduction and driving are equivalent. In International Symposium on Programming

Language Implementation and Logic Programming. Springer, 165–181.
Zhenjiang Hu, Hideya Iwasaki, Masato Takeichi, and Akihiko Takano. 1997. Tupling calculation eliminates multiple data traversals. ACM

Sigplan Notices 32, 8 (1997), 164–175.
Neil D Jones, Carsten K Gomard, and Peter Sestoft. 1993. Partial evaluation and automatic program generation. Peter Sestoft.
H Jan Komorowski. 1982. Partial evaluation as a means for inferencing data structures in an applicative language: A theory and implementation

in the case of Prolog. In Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM, 255–267.
Dmitry Kosarev and Dmitry Boulytchev. 2016. Typed Embedding of a Relational Language in OCaml. ACM SIGPLAN Workshop on ML (2016).
Michael Leuschel, Stephen J Craig, Maurice Bruynooghe, and Wim Vanhoof. 2004. Specialising interpreters using offline partial deduction. In

Program Development in Computational Logic. Springer, 340–375.
Michael Leuschel and Morten Heine Sørensen. 1996. Redundant argument filtering of logic programs. In International Workshop on Logic

Programming Synthesis and Transformation. Springer, 83–103.
John W. Lloyd and John C Shepherdson. 1991. Partial evaluation in logic programming. The Journal of Logic Programming 11, 3-4 (1991),

217–242.
Petr Lozov, Andrei Vyatkin, and Dmitry Boulytchev. 2018. Typed Relational Conversion. In Trends in Functional Programming, Meng Wang

and Scott Owens (Eds.). Springer International Publishing, Cham, 39–58.

https://doi.org/10.1145/3110252
https://doi.org/10.1007/978-3-642-55481-0

3:14 • Petr Lozov, Ekaterina Verbitskaia, and Dmitry Boulytchev

Zoltan Somogyi, Fergus Henderson, and Thomas Conway. 1996. The execution algorithm of Mercury, an efficient purely declarative logic
programming language. The Journal of Logic Programming 29, 1-3 (1996), 17–64.

Valentin F Turchin. 1986. The concept of a supercompiler. ACM Transactions on Programming Languages and Systems (TOPLAS) 8, 3 (1986),
292–325.

Philip Wadler. 1988. Deforestation: Transforming programs to eliminate trees. In European Symposium on Programming. Springer, 344–358.

	Abstract
	1 Introduction
	2 Searching for Paths in a Graph with a Relational Verifier
	3 Relational conversion
	4 Conjunctive Partial Deduction
	4.1 CPD for Prolog-like languages
	4.2 CPD for miniKanren

	5 Evaluation
	6 Conclusion and future work
	References

