First-order miniKanren representation: Great for tooling and search

GREGORY ROSENBLATT, University of Alabama at Birmingham, USA
LISA ZHANG, University of Toronto Mississauga, Canada

WILLIAM E. BYRD, University of Alabama at Birmingham, USA
MATTHEW MIGHT, University of Alabama at Birmingham, USA

We present a first-order implementation of miniKanren that makes it easy to build a miniKanren debugger, and allows
any other processes (including a human or a neural network) to guide the search. Typical miniKanren implementations
use procedures to represent data structures like goals and streams. Instead, our implementation uses Racket structs, which
are transparent, decomposable, manipulable, and not coupled with a particular search strategy. We obtain this first-order
implementation by carefully applying defunctionalization rules to a higher-order implementation, deriving two compatible
versions with the same search behavior and comparable performance. Decoupling the search in the first-order implementation
makes it possible to analyze, transform, and optimize a miniKanren program, even while that program is running. We use
a “human guided” search as a miniKanren debugger, and to demonstrate the breadth of supported search strategies. The
flexibility in how we interpret goals and streams opens up possibilities for new tools, and we hope to inspire the community
to build better miniKanren tooling.

CCS Concepts: « Software and its engineering — Functional languages; Constraint and logic languages; Con-
straints.

Additional Key Words and Phrases: miniKanren, microKanren, logic programming, relational programming, Scheme, Racket,
program synthesis

1 INTRODUCTION

While miniKanren has been applied successfully to at least seven different programming problems [1], under-
standing how miniKanren arrives at answers is challenging for all but the simplest examples. Well-hidden typos
and inefficient ordering of conjuncts can be difficult to detect. Why is it that after more than a decade of work,
miniKanren still lacks developer tools, like a basic debugger?

A seemingly different challenge is supporting different miniKanren search strategies. Different strategies may
be better-suited to particular miniKanren programs, so flexibility in choosing search strategies can make programs
run faster. Unfortunately, in Byrd et al. [1], changing the search strategy required significant modifications to a
miniKanren implementation, as well as a tedious, ad hoc reimplementation of a relational interpreter to work
around the default search behavior.

These two problems—building a debugger, and implementing various search strategies—can seem very different
on the surface. However, they are actually symptoms of one design decision common to most miniKanren
implementations: a higher-order representation of programs coupled to a particular search strategy.

Authors’ addresses: Gregory Rosenblatt, University of Alabama at Birmingham, USA, gregr@uab.edu; Lisa Zhang, University of Toronto
Mississauga, Canada, lczhang@cs.toronto.edu; William E. Byrd, University of Alabama at Birmingham, USA, webyrd@uab.edu; Matthew
Might, University of Alabama at Birmingham, USA, might@uab.edu.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license. @ @ @

© 2019 Copyright held by the author(s).
miniKanren.org/workshop/2019/8-ART2

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

2:2 « Rosenblatt et al.

Most miniKanren implementations represent an executing relational program using goals and streams. In
a higher-order implementation, goals and streams are represented using procedures. Procedures encapsulate
computational behavior, defining the search strategy for satisfying constraints. Unfortunately, procedures can’t
be modified or decomposed. Printing one yields:

> (fresh (x y)
(conde ((== 10 x) (== 20 y))
((== 30 x) (== 40 y))))

#<procedure:...>

Our proposal is to use a first-order program representation, where goals and streams are data structures not
coupled to any search strategy. These data structures are decomposable, inspectable and manipulable:

> (fresh (x y)
(conde ((== 10 x) (== 20 y))
((== 30 x) (== 40 y))))
#s(disj
#s(conj #s(== 10 #s(var x 1)) #s(== 20 #s(var y 2)))
#s(conj #s(== 30 #s(var x 1)) #s(== 40 #s(var y 2))))

The rest of the paper is organized as follows: we begin in Section 2 with an example of how a miniKanren
stepper could be useful. Section 3 describes the requirements of a miniKanren implementation to support such a
stepper. In Section 4, we implement a first-order version of miniKanren alongside a higher-order version with the
same search behavior. In Section 5, we explain the program transformations that make the stepper output easier
to understand. Section 6 describes applications of the first-order representation, such as building the stepper,
using a neural guided search strategy, and using dynamic search strategies, as well as providing ideas for other
miniKanren tools that have been difficult to implement in the past. We hope to inspire you to build these tools.

2 APPENDOH THE DEFICIENT: A MINIKANREN EMERGENCY

We begin this paper with a miniKanren emergency that we want you—dear readers—to help us resolve. Nub Let,
a hapless but earnest beginner miniKanren programmer, has accidentally replaced our beloved “appendo the
Magnificent” relation with appendoh the deficient.

As might be expected of such a dubious relation, appendoh has been failing left and right. Even worse, Nub
Let forgot to email the code for appendoh as part of the bug report. Fortunately, Nub Let included a transcript of
an interactive stepper session, enabled by using a first-order representation of miniKanren code.

Will you help us save this paper from the embarrassment of including a buggy five-line program?

Recall that a correct implementation of appendo looks like this:

(define-relation (appendo 1 s 1s)
(conde
(='0D (=sls)
((fresh (a d res)
= ‘Ga.,d)D
(= ‘(,a . ,res) 1ls)
(appendo d s res)))))
The output of interactively stepping through an appendoh query is shown in Figure 1. The execution of the

query is broken down into steps. Each step of evaluation corresponds to expanding one branch of a logical
disjunction.

First-order miniKanren representation: Great for tooling and search + 2:3

Stepping through query{ (query (x y) (appendoh x y '(1 2 3))) [—> Initial miniKanren query

Current Depth: 0 Number of Choices: 1
|| Choice 1:
= # 15 . ..
: ;(/ _ #282: ; 16; ———> Query variables value A disjunct that can
I| constraints: / Zero or more constraints in the disjunct be expanded
I

* (appendoh #s(var x 15) #s(var y 16) (1 2 3))

[hlelp, [ulndo, or choice number>|1

» User choice

Current Depth: 1 Number of Choices: 2

| Choice 1:

Il x=0

| y=(123)

| No constraints

| Choice 2:

| x = . #s(var b 18))

| y = #s(var y 16)

| Constraints:

| * (appendoh #s(var b 18) #s(var y 16) (1 2 3))

[hlelp, [ulndo, or choice number> 2

Current Depth: 2 Number of Choices: 2

| Choice 1:

[x = (1)
|y =023

| No constraints

| Choice 2:

| x = 1. #s(var b 21))

| y = d#s(var y 16)

| Constraints:

| * (appendoh #s(var b 21) #s(var y 16) (1 2 3))

[hlelp, [ulndo, or choice number>

Fig. 1. Interactive stepper output for the buggy appendoh

2:4 « Rosenblatt et al.

Let us explain what you see in Figure 1: at each step, the user picks a disjunct to expand from a list of numbered
choices. In the appendoh case, the disjuncts correspond to the conde branches in its definition, each of which
constrains the query variables in some way. For each choice, the stepper shows the values the query variables
will have if we take that choice. The stepper also shows zero or more constraints associated with a choice. These
constraints correspond to goals that must be satisfied if we take the choice.

To prevent an explosion of choices, the stepper only displays the new choices that are descendants of the choice
we just made in the previous step. We retain a history of user choices to provide the option of revisiting previous
choices by backtracking. Not all choices will have descendants: some may fail entirely, and some successful
choices may not have descendants.

Based on the stepper output in Figure 1 alone, can you deduce what the error is in the implementation of
appendoh? The stepper output of the correctly specified appendo is in Appendix A.

It turns out that Nub Let hid the appendoh implementation in Appendix B. Even without the code, a keen
reader may have noticed that in all the recursive calls to appendoh shown in the interactive stepper (look at the
constraints), the value of the last argument never changes from (1 2 3). This suggests that the bug is somewhere
in the recursive call portion of the appendoh code, and that perhaps the last argument is incorrect.

3 DESIDERATA

The appendoh example is simple and has a linear search space. Even so, we hope that this example convinces you
that a miniKanren stepper can be a useful debugging tool. In particular, being able to choose which disjuncts to
explore is even more helpful for complex miniKanren programs with many disjuncts. Only some of the disjuncts
might be buggy, so bugs would only manifest in queries that explore that disjunct. Being able to choose the order
of execution allows the programmer to determine which portion of the search space is of interest.

To build a stepper like the one in Section 2, our miniKanren implementation must satisfy two requirements:

(1) Streams should be decomposable, and thus inspectable. We need some other data structure that,
unlike procedures!, can be programmatically transformed into a human-readable, textual representation.

(2) Small-step execution should be possible. We need to be able to take one small step to expand the
chosen disjunct. Fine-grained control is important. The idea is not to search the disjunct exhaustively,
but to see just a little further in order to inform our next decision. We may even end up deciding that
continuing search of this disjunct will be a waste of effort, and prefer to revisit an earlier choice.

In short, we need the search state—the data representation of the stream—to be decoupled from the search
behavior—the search strategy that miniKanren uses. Unfortunately, typical miniKanren implementations use
a higher-order representation where these are hard to tease apart. Streams are represented as procedures that
bundle the search state (the data) with the search behavior (a single interpretation of that data). To satisfy our
requirements, we need a representation where the search state is accessible, so we can use it in at least two
different ways: as information to be examined by the user, and as a stream to be stepped. If we instead use a
first-order representation of the search state, we can view the stream as syntax, writing a different interpreter to
satisfy each requirement.

If both functionalities are present, then the interactive stepper is straightforward to implement. The stepper
extracts the list of disjuncts, presents these disjuncts as choices to the user, displays the query variable values
and constraints associated with each choice, reads user input, takes a step to expand the chosen disjunct, and
repeats until the user is satisfied.

ITechnically, it is possible to use procedures implemented in an object-oriented style, with a method that prints a human-readable textual
representation of its internal state. The issue with this approach is that supporting a new behavior requires implementing a new method. To
avoid this issue, we could implement a method that provides a complete representation as a data structure suitable for any purpose. But at
that point, we might as well just represent the stream as that data structure, and not use a procedure at all.

First-order miniKanren representation: Great for tooling and search « 2:5

4 IMPLEMENTATIONS OF MINIKANREN

In this section, we build two miniKanren implementations, one of which uses a first-order representation of
the search state to decouple it from the search behavior. That miniKanren implementation satisfies the two
requirements from Section 3: that streams should be decomposable, and small-step executions should be possible.

Our plan is to build miniKanren on top of a version of yKanren. We start by implementing a higher-order
pKanren to use as a familiar reference point. Our implementation is inspired by that of Hemann and Friedman
[2], but modified for improved performance. We encourage interested readers to review Hemann and Friedman
[2] for a detailed presentation of the zKanren language.

To obtain first-order pKanren, we will defunctionalize [4] the higher-order version. In particular, the first-order
pKanren uses Racket’s struct, which can be decomposed using match expressions (Section 4.1.1). This version of
pKanren also has a small step interpreter step that performs a small, finite expansion of a stream (Section 4.3.1).
For comparability, both pKanren versions implement the same search behavior.

The first-order and higher-order implementations share a portion of code, presented in Section 4.1. The
remaining portions of both implementations are shown side by side in Figure 2 on page 8. We discuss the
higher-order portion in Section 4.2, and compare with the first-order portion in Section 4.3. We recover a version
of miniKanren in Section 4.4, compatible with both first-order and higher-order yKanren.

4.1 Common Implementation

The common portion defines logic variables, constraint states, unification, and reification:

4.1.1 Logic Variables. Logic variables? are defined using struct, which has the benefit of avoiding type collision
with vectors. This allows support for vectors as terms, though for simplicity we do not include this support.

The declaration (struct NAME (FIELD...) #:prefab) defines a new record type, automatically generating
a constructor named NAME and field accessors named NAME-FIELD for each FIELD. The match form can pattern
match against values of this new type. Additionally, using #:prefab gives values of this type the printable
notation #s(NAME FIELD ...).

A logic variable contains the name it was given in the program, to help with debugging, and a non-negative
integer index used to identify it. Unlike the implementation of Hemann and Friedman [2], a fresh logic variable
is constructed with an index allocated from a shared, mutable counter, using var/fresh. This simplifies the
role of states, which would otherwise carry a functional counter [2]. Additionally, without this simplification, a
first-order implementation would be burdened with managing the functional counter to resolve unbound logic
variables®.

;; Logic variables
(struct var (name index) #:prefab)
(define (var=? x1 x2)

(= (var-index x1) (var-index x2)))
(define initial-var (var #f 0))
(define var/fresh

(let ((index 0))

(lambda (name) (set! index (+ 1 index))
(var name index))))

2Recall that a logic variable is a term that acts as a placeholder for an unknown value.
3Because we would like to implement many interpreters, this burden would multiply, because each interpreter would have to include support
for resolving unbound logic variables.

2:6 « Rosenblatt et al.

4.1.2 States. States containing constraints are defined using struct and track equality information using a
substitution. Other kinds of constraints could be supported, but for simplicity we will only consider equality
constraints in this implementation.

Substitutions are implemented as in Hemann and Friedman [2], though we choose to enforce acyclic term
structure using the occurs? check when extending a substitution via extend-sub. Our choice is consistent with
typical miniKanren implementations.

;; States
(define empty-sub '())
(define (walk t sub)
(let ((xt (and (var? t) (assf (lambda (x) (var=? t x)) sub))))
@Af xt (walk (cdr xt) sub) t)))
(define (occurs? x t sub)
(cond ((pair? t) (or (occurs? x (walk (car t) sub) sub)
(occurs? x (walk (cdr t) sub) sub)))
((var? t) (var=? x t))
(else #)))
(define (extend-sub x t sub)
(and (not (occurs? x t sub)) ‘((,x . ,t) . ,sub)))

(struct state (sub) #:prefab)
(define empty-state (state empty-sub))

4.1.3 Streams and Unification. Unification enforces equality between two terms and returns a substitution. It is
defined as unify, and is implemented as in Hemann and Friedman [2].
;; Unification
(define (unify/sub u v sub)
(let ((u (walk u sub)) (v (walk v sub)))

(cond
((and (var? u) (var? v) (var=? u v)) sub)
((var? u) (extend-sub u v sub))
((var? v) (extend-sub v u sub))
((and (pair? u) (pair? v)) (let ((sub (unify/sub (car u) (car v) sub)))
(and sub (unify/sub (cdr u) (cdr v) sub))))
(else (and (eqv? u V) sub)))))

(define (unify u v st)
(let ((sub (unify/sub u v (state-sub st))))
(and sub (cons (state sub) #f))))

4.1.4 Reification. Reification normalizes the presentation of terms containing logic variables for easier reading
and comparison. We implement reify as in Hemann and Friedman [2], except using a local, mutable counter to
simplify allocation of normalized variable identifiers.
;; Reification
(define (walk* tm sub)
(let ((tm (walk tm sub)))
(@Af (pair? tm)

First-order miniKanren representation: Great for tooling and search + 2:7

‘(, walkx (car tm) sub) . ,(walkx (cdr tm) sub))
tm))
(define (reified-index index)
(string->symbol
(string-append "_." (number->string index))))
(define (reify tm st)
(define index -1)
(walkx tm (let loop ((tm tm) (sub (state-sub st)))
(define t (walk tm sub))
(cond ((pair? t) (loop (cdr t) (loop (car t) sub)))
((var? t) (set! index (+ 1 index))
(extend-sub t (reified-index index) sub))
(else sub)))))
(define (reify/initial-var st)
(reify initial-var st))

4.2 Higher-order pKanren

Goals, immature streams, and stream maturation are implemented differently in higher- vs first-order yKanren.
The remaining implementation of higher-order pKanren is shown on the left-hand-side of Figure 2 on page 8.

4.2.1 Goals. Goals include binary disjunctions and conjunctions, equality constraints, and calls to user-defined
relations.

Binary disjunctions and conjunctions are constructed by disj and conj, which are defined as in Hemann and
Friedman [2], except that our implementation introduces explicit pauses.

Equality constraints are constructed with ==, which uses unify.

A call to a user-defined relation applies the relation to argument terms. Each call is represented as a thunk,
wrapped with the constructor relate. A user-defined relation is expressed as a Racket procedure, such that
forcing a call’s thunk corresponds to applying the procedure to the call’s arguments. (Higher-order pKanren
places no restrictions on what a Racket procedure implementing a relation may do, but Section 4.3.2 will describe a
few restrictions when defunctionalizing relation definitions in first-order yKanren.) A use of relate is also passed
first-order metadata describing the call, but this information is discarded by our higher-order implementation.

4.2.2 Streams. Streams define a search strategy for finding answers, which are states that satisfy all of a program’s
constraints. For improved performance?, we approximate the behavior of the interleaving search used in Byrd
etal. [1].

A mature stream is either the empty stream #f, or a pair of an answer and a remaining stream. An immature
stream is a thunk that has suspended the search before its completion. Forcing this thunk causes the search to
continue. Streams will typically be constructed with the help of mplus, bind, and pause.

In our first-order implementation, we represent suspension more explicitly than in Hemann and Friedman [2].
A pause produces an immature stream by introducing a thunk that delays transition of a goal to a stream. When
forced, the thunk applies the goal to a state.

The stream constructor mplus combines two streams. To improve answer diversity, our implementation of
mplus interleaves more often to prevent highly productive branches from monopolizing search resources. We

4Compared with the search described by Hemann and Friedman [2], this implementation can synthesize quines about twice as fast, and
twines and thrines nearly three times as fast, using a simple relational interpreter.

2:8 .

Rosenblatt et al.

;3 higher-order microKanren

(define (mature? s) (or (not s) (pair? s)))
(define (mature s)
(if (mature? s) s (mature (s))))

(define (disj g1 g2)

(lambda (st) (mplus (pause st g1)

(pause st g2))))

(define (conj g1 g2)

(lambda (st) (bind (pause st gl1) g2)))
(define (relate thunk _)

(lambda (st) (pause st (thunk))))
(define (== t1 t2) (lambda (st) (unify t1 t2 st)))

(define (mplus s1 s2)
(let ((s1 (if (mature? s1) s1 (s1))))
(cond ((not s1) s2)
((pair? s1)
(cons (car s1)
(lambda () (mplus s2 (cdr s1)))))
(else (lambda () (mplus s2 s1))))))
(define (bind s g)
(let ((s (if (mature? s) s (s))))
(cond ((not s) #f)
((pair? s)
(mplus (pause (car s) g)
(lambda () (bind (cdr s) g))))
(else (lambda () (bind s g))))))
(define (pause st g) (lambda () (g st)))

;; first-order microKanren

(struct disj (g1 g2) #:prefab)
(struct conj (g1 g2) #:prefab)
(struct relate (thunk description) #:prefab)
(struct = (t1 t2) #:prefab)
(struct bind (bind-s bind-g) #:prefab)
(struct mplus (mplus-s1 mplus-s2) #:prefab)

(struct pause (pause-state pause-goal) #:prefab)

(define (mature? s) (or (not s) (pair? s)))
(define (mature s)
(if (mature? s) s (mature (step s))))

(define (start st g)
(match g
((disj g1 g2)
(step (mplus (pause st g1)
(pause st g2))))
((conj g1 g2)
(step (bind (pause st gl1) g2)))
((relate thunk _)
(pause st (thunk)))
((== 11 t2) (unify t1 t2 st))))

(define (step s)
(match s
((mplus s1 s2)
(let ((s1 (if (mature? s1) s1 (step s1))))
(cond ((not s1) s2)
((pair? s1)
(cons (car s1)
(mplus s2 (cdr s1))))
(else (mplus s2 s1)))))
((bind s g)
(let ((s (if (mature? s) s (step s))))
(cond ((not s) #f)
((pair? s)
(step (mplus (pause (car s) g)
(bind (cdr s) £))))
(else (bind s £)))))
((pause st g) (start st g))
(@ M)

Fig. 2. Comparison of higher-order vs. first-order pKanren

First-order miniKanren representation: Great for tooling and search + 2:9

interleave each time an answer is popped off of a mature stream, rather than popping all available answers before
interleaving. To make this possible, bind needs to introduce a pause every time an answer is discovered.

Our implementation of mplus also delays forcing a child stream until it is ready to be examined. This small
detail can significantly reduce wasted work and memory usage.

4.2.3 Stream maturation. Stream maturation is implemented by mature. In order to extract an answer from a
stream, mature will continue forcing execution of an immature stream until it is mature.

4.3 First-order pKanren

We defunctionalize the higher-order representation of goals and streams to obtain the first-order implementation
of yKanren shown in Figure 2. This new version of pzKanren represents goal and streams as decomposable data
structures, and interprets streams using step, with the help of a goal interpreter start.

The goal constructors disj, conj, relate, and ==, along with the stream constructors bind, mplus, and pause,
are now defined using struct to allow decomposition by pattern matching via the keyword match. Mature
streams are represented the same way as in higher-order yKanren, as either the empty stream #f, or a pair of an
answer and a remaining stream.

We add two new procedures, step and start, which are small-step interpreters for streams and goals re-
spectively. These interpreters work together to implement the same interleaving search strategy defined by the
higher-order representation. More specifically, step interprets an immature stream by making a finite amount of
progress in searching for an answer. It interprets a mature stream by simply returning the stream. The interpreter
start interprets a goal in the context of a state, producing a new stream.

4.3.1 Defunctionalizing goals and streams. Each higher-order goal and stream definition maps to a pattern
matching clause in the corresponding interpreter. We have aligned the higher-order and first-order implementation
listings in Figure 2 to make this correspondence easy to see: for each line in the higher-order definition on the
left, scan along the same line to see the first-order version on the right.

We need to be careful when translating from higher-order to first-order. Failing to apply step at the right time
may impede search progress, and change the order in which answers are found. Applying step too soon may
lead to an infinite loop when a recursive relation is involved. These issues may not manifest immediately, so
when they show up, it is unclear whether they are due to a particular query, the definition of a relation, or a
problem with the search implementation. To avoid causing these issues when defunctionalizing the higher-order
representation, we must match its order of evaluation. We follow these rewrite rules to defunctionalize:

Rule: Top-level higher-order constructors become match clauses

o Every top-level higher-order goal constructor becomes a struct pattern clause of the match expression in
start.

o Every top-level higher-order stream constructor becomes a struct pattern clause of the match expression
in step.

o In each case, the pattern decomposes the struct, naming its components the same way the higher-order
constructors name their parameters. The clause bodies will then be defunctionalized.

Rule: Delaying goal/stream interpretation

o Anywhere that 1ambda is used in the higher-order implementation to delay construction of a goal or stream,
we simply apply the corresponding struct constructor.

o Justification: though the higher-order constructors are procedures which immediately execute their inter-
pretation when applied, the enclosing 1ambda leaves them inert until forced. Likewise, newly-constructed
struct data remains inert until interpreted by step or start.

2:10 « Rosenblatt et al.

Rule: Interpreting a goal/stream

o Anywhere that the higher-order implementation does not delay construction of a goal, we apply start to
the result of the corresponding struct constructor.

o Except in the case of pause, anywhere that the higher-order implementation does not delay construction
of a stream, we apply step to the result of the corresponding struct constructor.

e Anywhere the higher-order implementation uses pause, we simply apply the pause struct constructor.

o Justification: We apply start and step in this way because the higher-order constructors also immedi-
ately execute their interpretation. But pause is an exception because it does not immediately execute its
interpretation. Instead, it delays interpretation by producing an immature stream (a thunk).

Rule: Forcing immature streams

o Anywhere that the higher-order implementation forces progress of an immature stream, which corresponds
to applying a thunk, we apply step to that stream to also force progress. Look at the definition of mature
in Figure 2 for a simple example of this.

4.3.2 Defunctionalizing user-defined relations. As in the higher-order implementation, we represent calls to
user-defined relations using thunks wrapped with the constructor relate. Forcing such a thunk applies a Racket
procedure to the call’s arguments. Unlike the higher-order implementation, uses of first-order relate will
retain the call description metadata passed alongside the thunk. While an entirely first-order representation of
user-defined relations is possible, we prefer retaining this use of thunks because it allows us to leverage Racket’s
implementation® of lexical scope and procedure abstraction, rather than reimplement this ourselves.

Despite continuing to use thunks to represent calls to relations, it is still possible to perform arbitrary manip-
ulation of relation definitions if we make some assumptions about what such definitions may do. Specifically,
we will assume the use of Racket is limited to constructing pKanren goals. When these goals include terms, the
terms may be expressed using constants, references to lexical variables, pair construction, or fresh logic variable
construction.

Given our assumptions, we can obtain a first-order representation of a user-defined relation by applying it to
fresh logic variables to represent the parameters. Any goals in the result are those specified in the body of the
relation. Any terms in those goals are also either those specified, or they are logic variables. If a logic variable
is one of those used to represent a parameter of the relation, then the relation definition must reference that
parameter at that location. All other logic variables were created fresh. Additionally, since each use of relate
wraps metadata describing the call, we can always reconstruct a complete first-order description of a relation,
even if it is recursive.

4.4 Recovering miniKanren

In Appendix C we implement miniKanren on top of yKanren, using syntax-rules definitions similar to those in
Hemann and Friedman [2], with a notable addition: we define query, which describes the initial stream built by a
corresponding run. Since we are interested in manipulating streams in more ways than just extracting answers,
we need to separate stream construction from answer extraction. To extract answers from a stream, we provide
stream-take such that:

(run N body ...) ==> (stream-take N (query body ...))

We will make use of the metadata wrapped by relate when visualizing program representation in Section 5.
The metadata is a list containing the relation procedure (to allow unambiguous identification), the name of that
procedure, and all of the argument terms.

SHemann and Friedman [2] leverages Scheme in the same way.

First-order miniKanren representation: Great for tooling and search « 2:11

4.5 Performance

When comparing the higher-order and first-order implementations, we notice a small performance difference
when generating twines and thrines using a simple relational interpreter, and when running relational arithmetic
benchmarks. On these tests, the first-order implementation is roughly 5 percent slower and spends about 10
percent more time in the garbage collector. Chez Scheme runs a Scheme version of our benchmarks about 25
percent faster than Racket, but the first-order vs. higher-order performance ratio remains about the same.

5 PROGRAM TRANSFORMATIONS

With the first-order miniKanren implementation given in Section 4, streams are decomposable (and therefore
printable), and small-step executions are possible.

You might wonder whether we could stop here. After all, we can apply the procedure step to progress through
a query, and print the structure of the stream at each step. Appendix D shows the output of stepping through the
query (query (xs) (appendo xs xs '(a a))) using interleaving search.

Unfortunately, this presentation is intolerably verbose, even for such a simple query. It is difficult to extract
useful information about actual available choices. In addition, many useless steps are taken to expand goals that
are obviously failing. In order to obtain a simpler program representation that is actually human-readable, we
need to extract the useful information about each disjunct, and remove obviously failing disjuncts.

This section recovers the useful trace information that we saw in Figure 1 by introducing stream transformations.
Section 5.1 describes how to prune obviously failing disjuncts, so they need not be considered by a human.
Section 5.2 describes how to transform the stream into disjunctive normal form (DNF), to provide a flat tree of
disjuncts to choose from.

5.1 Pruning obvious failures

Some streams and goals in Appendix D are obviously failing. Examples include streams of the form (bind #f _),
(mplus #f #f), goals of the form (== A B), where A and B are unequal terms, and other streams and goals that
depend on failing components. We would prefer to eliminate these immediately so we can focus on meaningful
parts of the search state.

We can define a pruning transformation that uses equality information to identify constraints that will definitely
fail. Since streams and goals depending on these constraints may fail to produce any results, we will prune them
accordingly, producing a simplified stream.

Before taking a look at the implementation, it is important to consider that a transformation may change
the observed behavior of our program. We should decide what sorts of changes we will tolerate. Viewing a
miniKanren program as a search for answers that satisfy a query, we feel the following concessions are acceptable:

(1) Answers may be reordered.

(2) The contents of a state may be rearranged as long as its constraints express the same meaning.
(3) The number of steps required to find an answer may change, but will remain finite.

(4) Unproductive, infinite streams may become finite.

With that in mind, let us take a look at the implementation. The interpreters prune/stream and prune/goal
partially evaluate == constraints, using the resulting state to propagate equality information. Any failing stream
or goal will cause its parent bind and conj to also fail. A mplus or disj containing a failing child will be replaced
by the remaining child.

(define (prune/stream s)
(match s
((mplus s1 s2) (match (prune/stream s1)

2:12 « Rosenblatt et al.

(#f (prune/stream s2))
(s1 (match (prune/stream s2)
(#f s1)
(s2 (mplus s1 s2))))))
((bind s g) (match (prune/stream s)
(#f #f)
(“(,st . #f) (prune/goal st g))
((pause st g1)
(match (prune/goal st g)
(#f #£)
((pause st g) (pause st (conj g1 g)))))
(s (match (prune/goal empty-state g)
(#f #)
((pause _) (bind s £))))))
((pause st g) (prune/goal st g))
(‘(st . ,s) “(,st . ,(prune/stream s)))
(s s)))

(define (prune/goal st g)
(define (prune/term t) (walkx t (state-sub st)))
(match g
((disj g1 g2)
(match (prune/goal st g1)
(#f (prune/goal st g2))
((pause st1 g1)
(match (prune/goal st g2)
(#f (pause st1 g1))
((pause _ g2) (pause st (disj g1 g2)))))))
((conj g1 g2)
(match (prune/goal st g1)

(#f #£)
((pause st g1) (match (prune/goal st g2)
(#f #)

((pause st g2) (pause st (conj g1 g2)))))))
((relate thunk d) (pause st (relate thunk (prune/term d))))
(= 1112
(let ((t1 (prune/term t1)) (t2 (prune/term t2)))
(match (unify t1 t2 st)
(#f #£)
(‘(st . #f) (pause st (== t1 t2))))))))

Since pruning performs obvious clean up work without spending steps to do so, pruning often leads to a trace
containing fewer steps.

First-order miniKanren representation: Great for tooling and search « 2:13

5.2 Disjunctive Normal Form

In Figure 1, we actually do one more thing—we provide the user with a flat list of choices. We can obtain those
choices by first transforming the stream into disjunctive normal form (DNF).
The general DNF transformation rewrites goals and streams in the following way:

(conj (disj A B) ©C) ==> (disj (conj A C)
(conj B C))

(conj C (disj A B)) ==> (disj (conj C A)
(conj C B))

(pause st (disj A B)) ==> (mplus (pause st A)

(pause st B)

(bind (mplus A B) C) ==> (mplus (bind A C)
(bind B C))
(bind C (disj A B)) ==> (mplus (bind C A)
(bind C B))

This transformation has the effect of lifting all disjunctions out of conjunctions.

(define (dnf/stream s)
(define (push-pause st g)

(match g
((disj g1 g2) (mplus (push-pause st gl1) (push-pause st g2)))
(g (pause st g))))
(match s
((bind s g)

(let loopl ((s (dnf/stream s)) (g (dnf/goal g)))
(define (loop2 s g)

(match g
((disj ga gb) (mplus (loop2 s ga) (loop2 s gb)))
(g (bind s £))))
(match s

((mplus sa sb) (mplus (loopl sa g) (loopl sb g)))
(‘(st . ,s) (mplus (push-pause st g) (loopl s g)))
(s (Loop2 s g)))))

((pause st g) (push-pause st (dnf/goal g)))

((mplus s1 s2) (mplus (dnf/stream s1) (dnf/stream s2)))

(‘(st . ,s) “(,st . ,(dnf/stream s)))

(s s)))

(define (dnf/goal g)
(match g
((conj g1 g2)
(let loopl ((g1 (dnf/goal g1)) (g2 (dnf/goal g2)))
(define (loop2 g1 g2)

2:14 + Rosenblatt et al.

(match g2
((disj g2a g2b) (disj (loop2 g1 g2a) (loop2 g1 g2b)))
(g2 (conj g1 82))))
(match g1
((disj gla glb) (disj (loopl gla g2) (loopl glb g2)))
(g1 (loop2 g1 82)))))
((disj g1 g2) (disj (dnf/goal g1) (dnf/goal g2)))
(g £)))

Aside from preparing a stream for choice extraction, DNF has the added benefit of allowing equality information
to propagate more deeply, making pruning more effective. Consider the following goal:
(conj (disj (== x 5) A) B)

In this situation, information flow is impeded. Though we constrain x to be equal to 5, we cannot propagate
this information into the goal B, because it is possible that goal A may not express the same constraint.

We can allow this information to flow more freely by lifting the disjunction out of the conjunction like so:
(disj (conj (== x 5) B)

(conj A B))

Because each child of the disjunction now has its own copy of the goal B, it is safe to propagate the equality
information into the affected copy of B.

Another interesting property of DNF is that if we apply the full pruning transformation on a DNF stream, all
remaining == constraints will be trivial in the sense that they are guaranteed to succeed, and will not provide
new information. This is because all available equality information will have already been gathered in a pause
state. These trivial constraints may be safely removed.

One downside of DNF transformation is that program representations can become larger due to copying
children of conjunctions. In the worst case, the increase is exponential in the size of the original program. This
potential increase in size may be mitigated by an increased likelihood of prunable, obvious failures, thanks to the
improved flow of equality information.

Once we have a pruned DNF stream, we are finally in a position to provide choices of the form shown in
Figure 1. In section 6.1 we will explain how we extract this list of choices from such a stream.

6 APPLICATIONS
6.1 The miniKanren stepper

In this section, we implement explore/stream, the miniKanren stepper described in Figure 1. The implementation
of explore/stream is shown below. The main stepping loop follows the outline given at the end of Section 3.
We describe each facet of this loop in chronological order.

The first thing the explore/stream loop does is use the procedure stream->choices to extract a list of
choices from a stream. To prepare for extraction, we transform the stream into disjunctive normal form (DNF)
using dnf/stream, and perform pruning with prune/stream. Recall that these procedures were implemented in
Section 5. With a pruned DNF stream, we are guaranteed to find all disjunctions at the top (after any available
answers), as a mplus tree, with leaves of the form (pause STATE GOAL). Each of these leaves represents a choice,
and all choices can be extracted while traversing the tree.

Once we have our list of choices, we need to present each choice in a digestible form. We handle this with
print-choice. The GOAL in each choice is either a trivial == constraint (i.e., both terms are guaranteed to
be equal), a relate call, or a conj tree whose leaves are goals of this form. Traversing this conj tree, as in
goal->constraints, extracts these goals as a list of the choice’s constraints. As mentioned in Section 5.2, pruning

First-order miniKanren representation: Great for tooling and search « 2:15

in DNF has the emergent property that any remaining == constraints are guaranteed to be trivial, so we may
discard them, allowing us to focus on the relate calls. Finally, pruning in DNF also guarantees that, of the
variables mentioned in STATE, only those reachable from query variables are referenced in non-trivial constraints.
Therefore, we can discard STATE, keeping only the query variable values.

With the interesting part of the implementation out of the way, all we have left to do is read user input and
act accordingly. When the user makes a choice, we use step to expand the choice, providing the resulting stream
as input to the next iteration of explore/stream.

(define (explore/stream gvars s)
(define margin "|_")
(define (pp prefix v) (pprint/margin margin prefix v))
(define (pp/qvars vs)
(define (qv-prefix qv) (string-append "_" (symbol->string qv) "_=."))
(define qv-prefixes (and qvars (map qv-prefix qvars)))
(if gqv-prefixes
(for-each (lambda (prefix v) (pp prefix v)) qv-prefixes vs)
(for-each (lambda (v) (pp "_" Vv)) vs)))
(define (print-choice s)
(match s
((pause st g)
(pp/qvars (walked-term initial-var st))
(define cxs (walked-term (goal->constraints st g) st))
(unless (null? cxs)
(displayln (string-append margin "_Constraints:"))
(for-each (lambda (v) (pp "_*." Vv)) cxs))
(when (null? cxs)
(displayln (string-append margin " _No_constraints"))))))
(let loop ((s (stream—>choices s)) (undo '()))
(define previous-choice
(and (pair? undo)
(let* ((i.s (car undo)) (i (car i.s)) (s (cdr i.s)))
(list-ref (dropf s state?) (- i 1)))))
(define results (takef s state?))
(define choices (dropf s state?))
(display "\n)
(displayln ")
(unless (= (length results) 0)
(printf "Number_of_results:_~a\n" (length results))
(for-each (lambda (st)
(pp/qvars (walked-term initial-var st))
(newline))
results))
(when (and previous-choice (null? results))
(printf "Previous_Choice:\n")

(print-choice previous-choice)
(newline))

2:16 « Rosenblatt et al.

(printf "Current_Depth:_~a\n" (length undo))
(if (= @ (length choices))
(if (= (length results) 0)
(printf "Choice_FAILED! . _Undo_to_continue.\n")
(printf "No_more_choices_available.__Undo_to_continue.\n"))
(printf "Number_of_Choices:_~a\n" (length choices)))
(for-each (lambda (i s)
(printf (string-append "\n" margin "Choice_~s:\n") (+ i 1))
(print-choice s))
(range (length choices)) choices)
(printf "\n[hlelp,._[ulndo, _or_choice_number>_")
(define (invalid)
(displayln "\nInvalid_command_or_choice_number.\nHit_enter_to_continue.")
(read-line) (read-line)
(Loop s undo))
(define i (read))
(cond ((eof-object? i) (newline))
((or (eq? i 'h) (eq? i 'help))
(displayln
(string-append "\nType_either_the_letter_'u'_or_the"
"_number_following one_of_the_listed_choices."
"\nHit_enter_to_continue."))
(read-line) (read-line)
(loop s undo))
((and (or (eq? i 'u) (eg? i 'undo)) (pair? undo))
(loop (cdar undo) (cdr undo)))
((and (integer? i) (<=1 i) (<=1 (length choices)))
(loop (stream->choices (step (list-ref choices (- i 1))))
(cons (cons i s) undo)))
(else (invalid)))))

6.2 Search Strategies

A first-order miniKanren with the small-step interpreter step gives us fine-grained control over the search
strategy. Even though we begin Section 4.2 by reimplementing the biased-interleaving search, we can use whatever
search strategy we like. In this section, we describe a few different search strategies to illustrate the potential.

6.2.1 Human-guided search. One way of interpreting what we did in Section 6.1 is that we hijacked the search
strategy. That is, the miniKanren stepper is actually an implementation of a human-guided search strategy! Since
human behavior is as unpredictable as any program can be, the miniKanren stepper shows that any kind of
search strategy is possible.

6.2.2 Neural-guided search. Another idea is to replace the human-guided search strategy with an artificial human,
namely a neural network. In Zhang et al. [6] a neural network learns to guide the search of first-order miniKanren
performing a Programming by Example (PBE) task. In such a task, miniKanren is used to synthesize a procedure
specified using input/output pairs.

First-order miniKanren representation: Great for tooling and search « 2:17

For example, if we have a relational interpreter (eval-expo program environment output), then an example
PBE query with two input-output pairs is:

(query (p)
(eval-expo p '(a) '(a a a))
(eval-expo p '(b) '(b b b)))

The neural network evaluates each choice (disjunct) independently. It takes as input all the constraints
corresponding to each choice, and chooses the highest-scoring choice to expand in each step.

There are several deviations from Section 6.1 required for this setup. First, unlike in Figure 1, the neural
network can choose to expand any choice in each step, not just descendants of the previous step. So, the neural
network would not need the "undo" functionality at all. This revised setup means that the neural network does
not need to remember any past information, and can treat each step independently.

Another deviation is including a powerful strategy appropriate to PBE problems, which specializes the expansion
behavior of eval-expo constraints. In a PBE problem, each input-output example imposes constraints on the same
program to be synthesized, using eval-expo. However, a typical miniKanren search will attempt to satisfy each
eval-expo constraint completely before moving on to the next. This is unfortunate because only information
from one input-output example is considered at any given time, leading to deep exploration of impossible
synthesis choices that could have been ruled out immediately. Instead, we implement an expansion step that
will simultaneously expand all eval-expo constraints that share the same program argument. Combined with
DNF transformation and pruning, simultaneous expansion leads to immediate feedback being provided by all
input-output examples for each synthesis choice made. Aside from refuting bad choices more quickly, this
simultaneous expansion allows the neural network to observe related constraints all at once.

The network in Zhang et al. [6] is trained on generated PBE problems to which we know the answer, so that
the correct choice is known for each step. During training, the neural network guides the search by making
choices, and incorrect choices are penalized. We refer interested readers to Zhang et al. [6] for more details about
the model architecture and training.

6.2.3 Dynamic Goal Reordering. Though we have mostly discussed transformations while developing the
interactive stepper, there are other ways to improve a search strategy. One source of possibilities is Byrd et al.
[1], which makes use of a relational interpreter that performs various forms of conjunction reordering based on
heuristics specific to the interpreter definition. For instance, goals are reordered based on determinism annotations
on conde expressions, where at most one clause of a conde may succeed if we know the value of a particular
subset of logic variables. The conde expressions recognized as deterministic are expanded before any others. This
reordering would be more natural to implement with a decoupled representation, where it is easier to compose
with transformations and other strategies.

6.3 More possibilities

Beyond improvements to the search, a first-order representation is a natural medium for program analysis and
compilation. For instance, though we have not explored these ideas, we believe it should be possible to implement
garbage collection of constraints and substitutions, and just-in-time compilation, possibly benefiting from mode
analysis.

7 RELATED WORK

There have been previous unpublished implementations of miniKanren search using a first-order implementation.
For example, Michael Ballantyne has implemented a small-step miniKanren interpreter that uses a first-order

2:18 « Rosenblatt et al.

representation.® Ballantyne has also implemented a big-step interpreter with a first-order representation of the
search tree, in order to implement backjumping search 7. Both of these implementations decouple the program
representation from the search.

To our knowledge, this paper is the first first-order representation of a miniKanren search that preserves the ex-
act search order of the standard higher-order search representation, or that provides rules for a defunctionalization
that preserves this search order.

We are happy to report that in this same workshop, two other papers also make use of first-order representations.
We hope this is the start of a new trend. Lozov et al. [3] performs supercompilation (as conjunctive partial
deduction) using a first-order representation of goals that is similar to our representation of the search state.
Rozplokhas et al. [5] also uses a similar first-order goal representation to formalize semantics for miniKanren.

8 CONCLUSION

Both higher-order and first-order representations of miniKanren have their advantages. For both pedagogical
reasons and for the beauty and abstractness of the implementation, higher-order representations have been
dominant in the miniKanren literature. On multiple occasions, however, implementors have had to switch to
first-order representations in order to inspect or control the execution of miniKanren code.

Currently it is a burden to switch representations, not just because of the effort of defunctionalization, but
because any changes to the search order may break existing tests, and make it difficult to compare benchmark
results.

The rules for defunctionalization presented in Section 4.3, which preserve the exact search order, allow us to
have the best of both worlds. We can have a higher-order implementation for pedagogical purposes, for example,
and switch to a first-order implementation when it is time to debug or trace the code. And we can be confident
that our existing tests, applications, and benchmark programs will not need to change. Of course, while we are
living in the first-order world, we can easily change the search, or use an external process to guide the search.

We hope that there will be two positive outcomes to making it easier to switch between higher-order and first-
order implementations of miniKanren. First, the wider availability of first-order implementations should make it
much easier to produce the tools that the miniKanren ecosystem desperately needs, such as tracers, steppers, and
debuggers. The rules in Section 4.3 imply that a programmer can debug a program in a first-order implementation
of miniKanren, and be sure the program would show equivalent behavior in a higher-order miniKanren. Secondly,
by decoupling the search from the program representation, it should be easier to experiment with novel search
techniques, such as driving the search from an external process, or mixing different searches within a single
miniKanren program. This should make it easier and faster to explore program synthesis and other advanced
relational programming topics.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful comments. Research reported in this publication was
supported in part by the National Center For Advancing Translational Sciences of the National Institutes of
Health under Award Number 30T2TR002517-01S1. The content is solely the responsibility of the authors and
does not necessarily represent the official views of the National Institutes of Health.

REFERENCES

[1] William E. Byrd, Michael Ballantyne, Gregory Rosenblatt, and Matthew Might. 2017. A unified approach to solving seven programming
problems (functional pearl). Proceedings of the ACM on Programming Languages 1, ICFP (2017), 8.

Shttps://github.com/michaelballantyne/mk-interp/blob/master/mk.rkt
"https://github.com/michaelballantyne/backjumping-miniKanren/blob/master/backjumping2-defun4.rkt

https://github.com/michaelballantyne/mk-interp/blob/master/mk.rkt
https://github.com/michaelballantyne/backjumping-miniKanren/blob/master/backjumping2-defun4.rkt

First-order miniKanren representation: Great for tooling and search « 2:19

[2] Jason Hemann and Daniel P. Friedman. 2013. pKanren: A minimal functional core for relational programming. In Scheme and Functional
Programming Workshop 2013.

[3] Petr Lozov, Ekaterina Verbitskaia, and Dmitry Boulytchev. 2019. Relational Interpreters for Search Problems. In Proceedings of the 2019
miniKanren Workshop.

[4] John C Reynolds. 1972. Definitional interpreters for higher-order programming languages. In Proceedings of the ACM annual conference-
Volume 2. ACM, 717-740.

[5] Dmitry Rozplokhas, Andrey Vyatkin, and Dmitry Boulytchev. 2019. Certified Semantics for miniKanren. In Proceedings of the 2019
miniKanren Workshop.

[6] Lisa Zhang, Gregory Rosenblatt, Ethan Fetaya, Renjie Liao, William E. Byrd, Matthew Might, Raquel Urtasun, and Richard Zemel. 2018.
Neural guided constraint logic programming for program synthesis. In Advances in Neural Information Processing Systems. 1737-1746.

2:20 « Rosenblatt et al.

A STEPPER OUTPUT FOR APPENDO

This appendix shows the interactive stepper output for the query (query (x y) (appendo x y '(1 2 3)))
with a correctly implemented appendo shown in Section 2. Compare this output with that of a buggy appendoh
implementation in Figure 1

Stepping through query: (query (x y) (appendo x y '(1 2 3)))

Current Depth: 0 Number of Choices: 1

| Choice 1:

| x = #s(var x 1)

| y = #s(var y 2)

| Constraints:

| * (appendo #s(var x 1) #s(var y 2) (1 2 3))

[hlelp, [ulndo, or choice number> 1

Current Depth: 1 Number of Choices: 2

| Choice 1:

[x=0

l y=023)

| No constraints

| Choice 2:

| x = (1 . #s(var b 4))

| y = #s(var y 2)

| Constraints:

| * (appendo #s(var b 4) #s(var y 2) (2 3))

[hlelp, [ulndo, or choice number> 2

Current Depth: 2 Number of Choices: 2

| Choice 1:

[x =@M
|y =(23)

| No constraints

| Choice 2:

| x = 2 . #s(var b 7))

| y = #s(var y 2)

| Constraints:

| * (appendo #s(var b 7) #s(var y 2) (3))

[hlelp, [ulndo, or choice number>

First-order miniKanren representation: Great for tooling and search « 2:21

B IMPLEMENTATION OF APPENDOH
This appendix shows the implementation of the buggy appendoh that generated the stepper output in Figure 1.

(define-relation (appendoh 1 s 1s)
(conde
(='0D (=sls)
((fresh (a d res)
= ‘Ga.,d)D
= ‘(,a . ,res) 1s)
(appendoh d s 1s)))))

C RECOVERING MINIKANREN

We show an implementation miniKanren on top of yKanren. This version of miniKanren is compatible with both
the higher-order pKanren implemented in Section 4.2, and the first-order yKanren implemented in Section 4.3.

(define-syntax define-relation
(syntax-rules ()
(((name param ...) g ...)
(define (name param ...)
(relate (lambda () (fresh () g ...)) ‘(,name name ,param ...))))))
;; Low-level goals
(define succeed (== #t #t))
(define fail (== #f #t))
(define-syntax conjx
(syntax-rules ()
() succeed)
(@) g
((_ gs ... g-final) (conj (conj* gs ...) g-final))))
(define-syntax disjx
(syntax-rules ()
(&) fail)
(@))
((C g0 gs ...) (disj g0 (disj* gs ...))))
;; High level goals
(define-syntax fresh
(syntax-rules ()
(C&x...)gogs ...)
(let ((x (var/fresh 'x)) ...) (conj* g0 gs ...)))))
(define-syntax conde
(syntax-rules ()
(Cgs...)ths..))..)
(disj* (conj* g gs ...) (conj* hhs ...) ...))))
;3 Queries
(define-syntax query
(syntax-rules ()
(C(x...)gogs...)

2:22 « Rosenblatt et al.

(let ((goal (fresh (x ...) (= (list x ...) initial-var) g0 gs ...)))
(pause empty-state goal)))))
(define (stream-take n s)
@Gf (eqv? 0 n) 'O
(let ((s (mature s)))
(@Af (pair? s)
(cons (car s) (stream-take (and n (- n 1)) (cdr s)))
"ONN
(define-syntax run
(syntax-rules ()
((_ nbody ...) (map reify/initial-var (stream-take n (query body ...))))))
(define-syntax run*
(syntax-rules () ((_ body ...) (run #f body ...))))

D RAW APPENDO TRACE

This appendix shows how the search representation changes as we step through the query (query (xs) (appendo xs xs '(a a)))
using interleaving search. We need to transform this representation to recover the easier-to-read textual repre-
sentations in Figure 1 and Appendix A.

Step 0:
(pause
(state ()
(conj
(== (#s(var xs 1)) #s(var #f 0))
(relate (appendo #s(var xs 1) #s(var xs 1) (a a)))))

Step 1:
(mplus
(bind #f (relate (appendo #s(var xs 1) #s(var xs 1) (a a))))
(pause
(state ((== #s(var #f @) (#s(var xs 1)))))
(disj
(conj (== #s(var xs 1) ()) (== #s(var xs 1) (a a)))
(conj
(conj
(== (#s(var a 2) . #s(var b 3)) #s(var xs 1))
(== (#s(var a 2) . #s(var c 4)) (a a)))
(relate (appendo #s(var b 3) #s(var xs 1) #s(var c 4)))))))

Step 2:
(pause
(state ((== #ts(var #f @) (#s(var xs 1)))))
(disj
(conj (== #s(var xs 1) ()) (== #s(var xs 1) (a a)))
(conj
(conj

First-order miniKanren representation: Great for tooling and search

(== (#s(var a 2) . #s(var b 3)) #s(var xs 1))
(== (#s(var a 2) . #s(var c 4)) (a a)))
(relate (appendo #s(var b 3) #s(var xs 1) #s(var c 4))))))

Step 3:
(mplus
(pause
(state ((== #s(var #f @) (#s(var xs 1)))))
(conj
(conj
(== (#s(var a 2) . #s(var b 3)) #s(var xs 1))
(== (#s(var a 2) . #s(var c 4)) (a a)))
(relate (appendo #s(var b 3) #s(var xs 1) #s(var c 4)))))
(bind #f (== #s(var xs 1) (a a))))

Step 4:
(mplus
(bind #f (== #s(var xs 1) (a a)))
(mplus
(bind
(mplus (bind #f (== (#s(var a 2) . #s(var c 4)) (a a))) #f)
(relate (appendo #s(var b 3) #s(var xs 1) #s(var c 4))))
(pause
(state
((== #s(var c 4) (a))
== #s(var a 2) a)
== #s(var xs 1) (a . #s(var b 3)))
== #s(var #f @) ((a . #s(var b 3))))))
(disj
(conj (== #s(var b 3) () (== (a . #s(var b 3)) (a)))
(conj
(conj
(== (#s(var a 5) . #s(var b 6)) #s(var b 3))
(== (#s(var a 5) . #s(var c 7)) (a)))
(relate (appendo #s(var b 6) (a . #s(var b 3)) #s(var c 7))))))))

Step 5:
(mplus
(bind
(mplus (bind #f (== (#s(var a 2) . #s(var c 4)) (a a))) #f)
(relate (appendo #s(var b 3) #s(var xs 1) #s(var c 4))))
(pause
(state
((== #s(var c 4) (a))
(== #s(var a 2) a)
(== #s(var xs 1) (a . #s(var b 3)))

2:23

2:24 « Rosenblatt et al.

(== #s(var #f @) ((a . #s(var b 3))))))
(disj
(conj (== #s(var b 3) ()) (== (a . #s(var b 3)) (a)))
(conj
(conj
(== (#s(var a 5) . #s(var b 6)) #s(var b 3))
(== (#s(var a 5) . #s(var c 7)) (a)))
(relate (appendo #s(var b 6) (a . #s(var b 3)) #s(var c 7)))))))

Step 6:
(pause
(state
((== #s(var c 4) (a))
== #s(var a 2) a)
== #s(var xs 1) (a . #s(var b 3)))
== #s(var #f @) ((a . #s(var b 3))))))
(disj
(conj (== #s(var b 3) ()) (== (a . #s(var b 3)) (a)))
(conj
(conj
(== (#s(var a 5) . #s(var b 6)) #s(var b 3))
(== (#s(var a 5) . #s(var c 7)) (a)))
(relate (appendo #s(var b 6) (a . #s(var b 3)) #s(var c 7))))))

Step 7:
Answer: (state ((== #s(var #f 0) ((a)))))
Remaining stream:
(mplus
(pause
(state
((== #s(var c 4) (a))
(== #s(var a 2) a)
(== #s(var xs 1) (a . #s(var b 3)))
(== #s(var #f @) ((a . #s(var b 3))))))
(conj
(conj
(== (#s(var a 5) . #s(var b 6)) #s(var b 3))
(== (#s(var a 5) . #s(var c 7)) (a)))
(relate (appendo #s(var b 6) (a . #s(var b 3)) #s(var c 7)))))
(mplus (bind #f (== #s(var xs 1) #s(var c 4))) #f))

E PRUNING
We show the code used to eliminate obviously failing goals from our stream.

(define (prune/stream s)
(match s

First-order miniKanren representation: Great for tooling and search

((mplus s1 s2) (match (prune/stream s1)
(#f (prune/stream s2))
(s1 (match (prune/stream s2)
(#f s1)
(s2 (mplus s1 s2))))))
((bind s g) (match (prune/stream s)
(#f #f)
(“(,st . #f) (prune/goal st g))
((pause st g1)
(match (prune/goal st g)
(#f #£)
((pause st g) (pause st (conj g1 g)))))
(s (match (prune/goal empty-state g)
(#f #)
((pause _ _) (bind s £))))))
((pause st g) (prune/goal st g))
(“‘Gst . ,s) “(,st . ,(prune/stream s)))
(s)

(define (prune/goal st g)
(define (prune/term t) (walkx t (state-sub st)))
(match g
((disj g1 g2)
(match (prune/goal st g1)
(#f (prune/goal st g2))
((pause st1 g1)
(match (prune/goal st g2)
(#f (pause st1 g1))
((pause _ g2) (pause st (disj gl g2)))))))
((conj g1 82)
(match (prune/goal st g1)

(#f #£)
((pause st g1) (match (prune/goal st g2)
(#f #)

((pause st g2) (pause st (conj g1 g2)))))))
((relate thunk d) (pause st (relate thunk (prune/term d))))
(=111t
(let ((t1 (prune/term t1)) (t2 (prune/term t2)))
(match (unify t1 t2 st)
(#f #)
(“(st . #f) (pause st (= t1 t2))))))))

F TRANSFORMATION TO DISJUNCTIVE NORMAL FORM

We show the code used to transform our streams into Disjunctive Normal Form (DNF).

(define (dnf/stream s)

2:25

2:26 « Rosenblatt et al.

(define (push-pause st g)

(match g
((disj g1 g2) (mplus (push-pause st gl1) (push-pause st g2)))
(& (pause st £))))
(match s
((bind s g)

(let loopl ((s (dnf/stream s)) (g (dnf/goal g)))
(define (loop2 s g)

(match g
((disj ga gh) (mplus (loop2 s ga) (loop2 s gb)))
G (bind s £)3))
(match s

((mplus sa sb) (mplus (loopl sa g) (loopl sb g)))
(‘(,st . ,s) (mplus (push-pause st g) (loopl s g)))
(s (loop2 s £)))))

((pause st g) (push-pause st (dnf/goal g)))

((mplus s1 s2) (mplus (dnf/stream s1) (dnf/stream s2)))

(‘(st . ,s) “(,st . ,(dnf/stream s)))

(s s

(define (dnf/goal g)
(match g
((conj g1 g2)
(let loopl ((g1 (dnf/goal g1)) (g2 (dnf/goal g2)))
(define (loop2 g1 g2)

(match g2
((disj g2a g2b) (disj (loop2 g1 g2a) (loop2 g1 g2b)))
(g2 (conj g1 82))))
(match g1
((disj gla glb) (disj (loopl gla g2) (loopl glb g2)))
(g1 (Loop2 g1 g2)))))

((disj g1 g2) (disj (dnf/goal gl1) (dnf/goal g2)))
(g)

	Abstract
	1 Introduction
	2 Appendoh the Deficient: a miniKanren emergency
	3 Desiderata
	4 Implementations of miniKanren
	4.1 Common Implementation
	4.2 Higher-order Kanren
	4.3 First-order Kanren
	4.4 Recovering miniKanren
	4.5 Performance

	5 Program Transformations
	5.1 Pruning obvious failures
	5.2 Disjunctive Normal Form

	6 Applications
	6.1 The miniKanren stepper
	6.2 Search Strategies
	6.3 More possibilities

	7 Related Work
	8 Conclusion
	References
	A Stepper output for appendo
	B Implementation of appendoh
	C Recovering miniKanren
	D Raw Appendo Trace
	E Pruning
	F Transformation to Disjunctive Normal Form

