
Towards a miniKanren with fair search strategies

KUANG-CHEN LU, Indiana University, USA
WEIXI MA, Indiana University, USA
DANIEL P. FRIEDMAN, Indiana University, USA

We describe fairness levels in disjunction and conjunction implementations. Specifically, a disjunction implementation can be

fair, almost-fair, or unfair. And a conjunction implementation can be fair or unfair. We compare the fairness level of four

search strategies: the standard miniKanren interleaving depth-first search, the balanced interleaving depth-first search, the

fair depth-first search, and the standard breadth-first search. The two non-standard depth-first searches are new. And we

present a new, more efficient and shorter implementation of the standard breadth-first search. Using quantitative evaluation,

we argue that each depth-first search is a competitive alternative to the standard one, and that our improved breadth-first

search implementation is more efficient than the current one.

1 INTRODUCTION
miniKanren is a family of relational programming languages. Friedman et al. [3, 4] introduce miniKanren and its

implementation in The Reasoned Schemer and The Reasoned Schemer, 2nd Ed (TRS2). Hemann et al. [5] describe

microKanren, a minimal core of miniKanren comprised of only 54 LOC, miniKanren has been implemented in

many other languages, including multiple ones using the same language (e.g. OCanren[7]). As demonstrated in

Byrd et al. [2], miniKanren can be used to naturally express difficult computations, such as using an interpreter

to perform example-based program synthesis, or using a proof checker as a theorem prover. The papers, talks,

and tutorials on miniKanren.org present many other unusual problems, and their solutions in miniKanren.

A subtlety arises when a conde contains many clauses: not every clause has an equal chance of contributing to

the result. As an example, consider the following relation repeato and its invocation.

(defrel (repeato x out)

(conde

((≡ `(,x) out))

((fresh (res)

(≡ `(,x . ,res) out)

(repeato x res)))))

> (run 4 q

(repeato '* q))

'((*) (* *) (* * *) (* * * *))

Next, consider the following disjunction of invoking repeato with four different letters.

Authors’ addresses: Kuang-Chen Lu, Indiana University, USA, kl13@iu.edu; Weixi Ma, Indiana University, USA, mvc@iu.edu; Daniel P.

Friedman, Indiana University, USA, dfried@indiana.edu.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

© 2019 Copyright held by the author(s).

miniKanren.org/workshop/2019/8-ART1

miniKanren.org
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

1:2 • Kuang-Chen Lu, Weixi Ma, and Daniel P. Friedman

> (run 12 q

(conde

((repeato 'a q))

((repeato 'b q))

((repeato 'c q))

((repeato 'd q))))

conde intuitively relates its clauses with logical or. And thus an unsuspicious beginner would expect each letter

to contribute equally to the result, as follows.

'((a) (b) (c) (d)

(a a) (b b) (c c) (d d)

(a a a) (b b b) (c c c) (d d d))

The conde in TRS2, however, generates a less expected result.

'((a) (a a) (b) (a a a)

(a a a a) (b b)

(a a a a a) (c)

(a a a a a a) (b b b)

(a a a a a a a) (d))

The miniKanren in TRS2 implements interleaving DFS (DFSi), the cause of this unexpected result. With this

search strategy, each conde clause takes half of its received computational resources and passes the other half to

its following clauses, except for the last clause that takes all resources it receives. In the example above, the a
clause takes half of all resourses. And the b clause takes a quarter. Thus c and d barely contribute to the result.

DFSi is sometimes powerful for an expert. By carefully organizing the order of conde clauses, a miniKanren

program can explore more “interesting” clauses than those uninteresting ones, and thus use computational

resources efficiently.

DFSi is not always the best choice. For instance, it might be less desirable for novice miniKanren users—

understanding implementation details and fiddling with clause order is not their first priority. There is another

reason that miniKanren could use more search strategies than just DFSi . In many applications, there does not

exist one order that serves all purposes. For example, a relational dependent type checker contains clauses for

constructors that build data and clauses for eliminators that use data. When the type checker is generating

simple and shallow programs, the clauses for constructors had better be at the top of the conde expression. When

performing proof searches for complicated programs, the clauses for eliminators had better be at the top of

the conde expression. With DFSi , these two uses cannot be efficient at the same time. In fact, to make one use

efficient, the other one must be more sluggish. Boskin et al. [1] propose and implement a means to eliminate or

re-order disjunctive clauses to accommodate varying search needs such as these.

The specification that gives every clause in the same conde equal “search priority” is fair disj. And search

strategies with almost-fair disj give every clause similar priority. Fair conj, a related concept, is more subtle.

We cover it in the next section.

Our research compares four search strategies with different features in fairness (Table 1). To summarize our

contributions, we

• propose and implement balanced interleaving depth-first search (DFSbi)

• propose and implement fair depth-first search (DFSf)

• implement in a new way the standard breath-first search. We refer to BFSser as the original implementation

by Seres et al. [9] and BFSimp as our new one. When we use BFS without subscripts, we mean both BFSser

Towards a miniKanren with fair search strategies • 1:3

and BFSimp . We formally prove that the two implementations are semantically equivalent, however, BFSimp
runs faster in all benchmarks and is shorter.

Source code of implementations, examples, benchmarks, and formal proofs are available at the following URL:

https://github.com/LuKC1024/Towards-a-miniKanren-with-fair-search-strategies

Search Strategies disj conj

DFSi unfair unfair

DFSbi almost-fair unfair

DFSf fair unfair

BFS fair fair

Table 1. Fairness of all search strategies

2 SEARCH STRATEGIES AND FAIRNESS
In this section, we define fairness levels in disjunction and conjunction implementations. Specifically, a disjunction

implementation can be fair, almost-fair, or unfair. And a conjunction implementation can be fair or unfair. Fairness,

intuitively, measures how evenly a search strategy allocates computational resource to “sibling” spaces.

Before going further into fairness, we give a short review of the terms: state, space, and goal. A state is a
collection of constraints. (Here, we restrict constraints to unification constraints.) Every answer corresponds to a

state. A space is a collection of states. And a goal is a function from a state to a space. Every state in the output

space includes the input state and possibly more constraints.

Now we elaborate fairness by running more queries about repeato . We never use run∗ here because fairness
is more interesting when we ask for a bounded number of answers. It is perfectly fine, however, to use run∗ with
any search strategy.

2.1 Fair disj
Given the following program, it is natural to expect lists of each letter to constitute 1/4 in the answer list. DFSi ,

TRS2’s search strategy, however, results in many more lists of as than lists of other letters. And some letters (e.g.

c and d) are rarely seen. The more clauses, the worse the situation.

;; DFSi (unfair disj)

> (run 12 q

(conde

((repeato 'a q))

((repeato 'b q))

((repeato 'c q))

((repeato 'd q))))

'((a) (a a) (b) (a a a)

(a a a a) (b b)

(a a a a a) (c)

(a a a a a a) (b b b)

(a a a a a a a) (d))

https://github.com/LuKC1024/Towards-a-miniKanren-with-fair-search-strategies

1:4 • Kuang-Chen Lu, Weixi Ma, and Daniel P. Friedman

Under the hood, the conde here allocates computational resources to four trivially different spaces. The unfair

disj in DFSi allocates many more resources to the first space. On the contrary, fair disj would allocate resources
evenly to each space.

;; DFSf (fair disj)

> (run 12 q

(conde

((repeato 'a q))

((repeato 'b q))

((repeato 'c q))

((repeato 'd q))))

'((a) (b) (c) (d)

(a a) (b b) (c c) (d d)

(a a a) (b b b) (c c c) (d d d))

;; BFS (fair disj)

> (run 12 q

(conde

((repeato 'a q))

((repeato 'b q))

((repeato 'c q))

((repeato 'd q))))

'((a) (b) (c) (d)

(a a) (b b) (c c) (d d)

(a a a) (b b b) (c c c) (d d d))

Running the same program again with almost-fair disj (e.g. DFSbi) gives a similar result, where b and c are
swapped. Almost-fair, however, is not completely fair, as shown by the following example.

;; DFSbi (almost-fair disj)

> (run 16 q

(conde

((repeato 'a q))

((repeato 'b q))

((repeato 'c q))

((repeato 'd q))

((repeato 'e q))))

'((a) (c) (b)

(a a) (c c) (b b) (d)

(a a a) (c c c) (b b b) (e)

(a a a a) (c c c c) (b b b b) (d d)

(a a a a a))

DFSbi is fair only when the number of goals is a power of 2, otherwise, it allocates some goals with twice

as many resources as the others. In the above example, where the conde has five clauses, DFSbi allocates more

resources to the clauses of a, b, and c.
We end this subsection with precise definitions of all levels of disj fairness. Our definition of fair disj is

slightly more general than the one in Seres et al. [9], which is only for binary disjunction. We generalize it to a

multi-arity one.

Definition 2.1 (fair disj). A disj is fair if and only if it allocates computational resources evenly to spaces
produced by goals in the same disjunction (i.e., clauses in the same conde).

Definition 2.2 (almost-fair disj). A disj is almost-fair if and only if it allocates computational resources
so evenly to spaces produced by goals in the same disjunction that the maximal ratio of resources is bounded by a
constant.

Definition 2.3 (unfair disj). A disj is unfair if and only if it is not almost-fair.

Towards a miniKanren with fair search strategies • 1:5

2.2 Fair conj
Given the following program, it is natural to expect lists of each letter to constitute 1/4 in the answer list. Search

strategies with unfair conj: DFSi , DFSbi , and DFSf , however, results in many more lists of as than lists of other

letters. And some letters are rarely seen. Here again, as the number of clauses grows, the situation worsens.

Although some strategies have a different level of fairness in disj, they have the same behavior when there is

no call to a relational definition in conde clauses, including this case.

;; DFSi (unfair conj)

> (run 12 q

(fresh (x)

(conde

((≡ 'a x))

((≡ 'b x))

((≡ 'c x))

((≡ 'd x)))

(repeato x q)))

'((a) (a a) (b) (a a a)

(a a a a) (b b)

(a a a a a) (c)

(a a a a a a) (b b b)

(a a a a a a a) (d))

;; DFSf (unfair conj)

> (run 12 q

(fresh (x)

(conde

((≡ 'a x))

((≡ 'b x))

((≡ 'c x))

((≡ 'd x)))

(repeato x q)))

'((a) (a a) (b) (a a a)

(a a a a) (b b)

(a a a a a) (c)

(a a a a a a) (b b b)

(a a a a a a a) (d))

;; DFSbi (unfair conj)

> (run 12 q

(fresh (x)

(conde

((≡ 'a x))

((≡ 'b x))

((≡ 'c x))

((≡ 'd x)))

(repeato x q)))

'((a) (a a) (b) (a a a)

(a a a a) (b b)

(a a a a a) (c)

(a a a a a a) (b b b)

(a a a a a a a) (d))

Under the hood, the conde and the call to repeato are connected by conj. The conde goal outputs a space
including four trivially different states. Applying the next conjunctive goal, (repeato x q), produces four
trivially different spaces. In the examples above, all search strategies allocate more computational resources to

the space of a. On the contrary, fair conj would allocate resources evenly to each space. For example,

;; BFS (fair conj)

> (run 12 q

(fresh (x)

(conde

((≡ 'a x))

((≡ 'b x))

((≡ 'c x))

((≡ 'd x)))

(repeato x q)))

'((a) (b) (c) (d)

(a a) (b b) (c c) (d d)

(a a a) (b b b) (c c c) (d d d))

A more interesting situation is when the first conjunct produces an unbounded number of states. Consider

the following example: a naive specification of fair conj might require search strategies to produce all sorts of

singleton lists, but there would not be any lists of length two or longer, which makes the strategies incomplete. A

search strategy is complete if and only if “every correct answer would be discovered after some finite time” [9],

otherwise, it is incomplete. In the context of miniKanren, a search strategy is complete means that every correct

answer has a position in large enough answer lists.

1:6 • Kuang-Chen Lu, Weixi Ma, and Daniel P. Friedman

;; naively fair conj

> (run 6 q

(fresh (xs)

(conde

((repeato 'a xs))

((repeato 'b xs)))

(repeato xs q)))

'(((a)) ((b))

((a a)) ((b b))

((a a a)) ((b b b)))

Our solution requires a search strategy with fair conj to organize states in buckets in spaces, where each

bucket is a finite collection of states and every space contains possibly infinite buckets, and to allocate resources

evenly among spaces derived from states in the same bucket. It is up to a search strategy designer to decide by

what criteria to put states in the same bucket, and how to allocate resources among spaces related to different

buckets.

BFS puts states of the same cost in the same bucket, and allocates resources carefully among spaces related to

different buckets such that it produces answers in increasing order of cost. The cost of an answer is its depth in

the search tree (i.e., the number of calls to relational definitions required to find the answer) [9]. In the above

examples, the cost of each answer is equal to their lengths because we need to apply repeato n times to find an

answer of length n. In the following example, every answer is a list of a list of symbols, where inner lists in the

same outer list are identical. Here the cost of each answer is equal to the length of its inner lists plus the length

of its outer list. For example, the cost of ((a) (a)) is 1 + 2 = 3.

;; BFS (fair conj)

> (run 12 q

(fresh (xs)

(conde

((repeato 'a xs))

((repeato 'b xs)))

(repeato xs q)))

'(((a)) ((b))

((a) (a)) ((b) (b))

((a a)) ((b b))

((a) (a) (a)) ((b) (b) (b))

((a a) (a a)) ((b b) (b b))

((a a a)) ((b b b)))

We end this subsection with precise definitions of all levels of conj fairness.

Definition 2.4 (fair conj). A conj is fair if and only if it allocates computational resources evenly to spaces
produced from states in the same bucket. A bucket is a finite collection of states. And search strategies with fair conj
should represent spaces with possibly unbounded collections of buckets.

Definition 2.5 (unfair conj). A conj is unfair if and only if it is not fair.

Towards a miniKanren with fair search strategies • 1:7

#| Goal × Goal → Goal |#

(define (disj2 g1 g2)

(lambda (s)

(append∞ (g1 s) (g2 s))))

#| Space × Space → Space |#

(define (append∞ s∞ t∞)

(cond
((null? s∞) t∞)

((pair? s∞)

(cons (car s∞)

(append∞ (cdr s∞) t∞)))

(else (lambda ()

(append∞ t∞ (s∞))))))

(define-syntax disj
(syntax-rules ()

((disj) (fail))

((disj g0 g ...) (disj+ g0 g ...))))

(define-syntax disj+
(syntax-rules ()

((disj+ g) g)

((disj+ g0 g1 g ...) (disj2 g0 (disj+ g1 g ...)))))

Fig. 1. implementation of DFSi (Part I)

3 INTERLEAVING DEPTH-FIRST SEARCH
In this section, we review the implementation of DFSi . We focus on parts that are relevant to other strategies. TRS2,

chapter 10 and the appendix, “Connecting the wires”, provide a comprehensive description of the miniKanren

implementation but limited to unification constraints (≡). Fig. 1 and Fig. 2 show parts that are later compared

with other search strategies. We follow some conventions to name variables: ss name states; gs (possibly with

subscript) name goals; variables ending with
∞
name spaces. Fig. 1 shows the implementation of disj. The first

function, disj2, implements binary disjunction. It applies the two disjunctive goals to the input state s and

composes the two resulting spaces with append∞. The following syntax definitions say disj is right-associative.

Fig. 2 shows the implementation of conj. The first function, conj2, implements binary conjunction. It applies

the first goal to the input state, then applies the second goal to states in the resulting space. The helper function

append-map∞ applies its input goal to states in its input space and composes the resulting spaces. It reuses

append∞ for space composition. The following syntax definitions say conj is also right-associative.

1:8 • Kuang-Chen Lu, Weixi Ma, and Daniel P. Friedman

#| Goal × Goal → Goal |#

(define (conj2 g1 g2)

(lambda (s)

(append-map∞ g2 (g1 s))))

#| Goal × Space → Space |#

(define (append-map∞ g s∞)

(cond
((null? s∞) '())

((pair? s∞)

(append∞ (g (car s∞))

(append-map∞ g (cdr s∞))))

(else (lambda ()

(append-map∞ g (s∞))))))

(define-syntax conj
(syntax-rules ()

((conj) (fail))

((conj g0 g ...) (conj+ g0 g ...))))

(define-syntax conj+

(syntax-rules ()

((conj+ g) g)

((conj+ g0 g1 g ...) (conj2 g0 (conj+ g1 g ...)))))

Fig. 2. implementation of DFSi (Part II)

4 BALANCED INTERLEAVING DEPTH-FIRST SEARCH
DFSbi has almost-fair disj and unfair conj. Its implementation differs from DFSi ’s in the disj macro. When

there are one or more disjunctive goals, the new disj builds a balanced binary tree whose leaves are the goals

and whose nodes are disj2s, hence the name of this search strategy. In contrast, the disj in DFSi constructs the

binary tree in a particularly unbalanced form. We list the new disj with its helper in Fig. 3. The new helper,

disj+, takes two additional ‘arguments’. They accumulate goals to be put in the left and right subtrees. The first

clause handles the case where there is only one goal. In this case, the tree is the goal itself. When there are more

goals, we partition the list of goals into two sublists of roughly equal lengths and recur on the two sublists. We

move goals to the accumulators in the last clause. As we are moving two goals each time, there are two base

cases: (1) no goal remains; (2) one goal remains. We handle these two new base cases in the second clause and the

third clause, respectively.

5 FAIR DEPTH-FIRST SEARCH
DFSf has fair disj and unfair conj. Its implementation differs from DFSi ’s in disj2 (Fig. 4). The new disj2 calls
a new and fair version of append∞. append∞f air immediately calls its helper, loop, with the first argument, s?,

Towards a miniKanren with fair search strategies • 1:9

(define-syntax disj
(syntax-rules ()

((disj) fail)

((disj g0 g ...) (disj+ () () g0 g ...))))

(define-syntax disj+
(syntax-rules ()

((disj+ () () g) g)

((disj+ (gl ...) (gr ...))

(disj2 (disj+ () () gl ...)

(disj+ () () gr ...)))

((disj+ (gl ...) (gr ...) g0)

(disj2 (disj+ () () gl ...)

(disj+ () () g0 gr ...)))

((disj+ (gl ...) (gr ...) ga g ... gz)

(disj+ (gl ... ga) (gz gr ...) g ...))))

Fig. 3. implementation of DFSbi

#| Goal × Goal → Goal |#

(define (disj2 g1 g2)

(lambda (s)

(append∞f air (g1 s) (g2 s))))

#| Space × Space → Space |#

(define (append∞f air s∞ t∞)

(let loop ((s? #t) (s∞ s∞) (t∞ t∞))

(cond
((null? s∞) t∞)

((pair? s∞)

(cons (car s∞)

(loop s? (cdr s∞) t∞)))

(s? (loop #f t∞ s∞))

(else (lambda ()

(loop #t (t∞) (s∞)))))))

Fig. 4. implementation of DFSf

initialized to #t, which indicates that we haven’t swapped s∞ and t∞. The swapping happens at the third cond
clause in loop, where s? is updated accordingly. The first two cond clauses essentially copy the cars and stop

recursion when one of the input spaces is obviously finite. The third clause, as we mentioned above, is just for

1:10 • Kuang-Chen Lu, Weixi Ma, and Daniel P. Friedman

#| Goal × Space → Space |#

(define (append-map∞f air g s∞)

(cond
((null? s∞) '())

((pair? s∞)

(append∞f air (g (car s∞))

(append-map∞f air g (cdr s∞))))

(else (lambda ()

(append-map∞f air g (s∞))))))

Fig. 5. stepping-stone toward BFSimp (based on DFSf)

swapping. When the fourth and last clause runs, we know that both s∞ and t∞ end with thunks, and that we

have swapped them. In this case, we construct a new thunk. The new thunk swaps back the two spaces in the

recursive call to loop. This is unnecessary for fairness—we do it to produce answers in a more readable order.

6 BREADTH-FIRST SEARCH
BFS has both fair disj and fair conj. Our first BFS implementation (Fig. 5) serves as a “stepping-stone” toward

BFSimp . It is so similar to DFSf (not DFSi) that we only need to apply two changes: (1) rename append-map∞ to

append-map∞f air and (2) replace append∞ with append∞f air in append-map∞f air ’s body.

This implementation can be improved in two ways. First, as mentioned in subsection 2.2, BFS puts answers in

buckets and answers of the same cost are in the same bucket. In the above implementation, however, it is not

obvious how we manage cost information—the cars of a space have cost 0 (i.e., they are all in the same bucket),

and every thunk indicates an increment in cost. It is even more subtle that append∞f air and the append-map∞f air
respects the cost information. Second, append∞f air is extravagant in memory usage. It makes O(n +m) new

cons cells every time, where n andm are the sizes of the first buckets of two input spaces. DFSf is also space

extravagant.

In the following paragraphs, we first describe BFSimp implementation that manages cost information in a more

clear and concise way and is less extravagant in memory usage. Then we compare BFSimp with BFSser .

We simplify the cost information by changing the Space type, modifying related function definitions, and

introducing a few more functions. The new type of Space is a pair whose car is a list of answers (the bucket),
and whose cdr is either #f or a thunk returning a space. The #f here means the space is obviously finite, just

like empty list in other implementations. We list functions related to the pure subset in Fig. 6. The first three

functions are space constructors. none makes an empty space; unit makes a space from one answer; and step
makes a space from a thunk. The remaining functions are as before. Luckily, the change in append∞f air also

fixes the miserable space extravagance—the use of append helps us to reuse the first bucket of t∞. Functions
implementing impure features are in Fig. 7. The first function, elim, takes a space s∞ and two continuations fk
and sk. When s∞ contains no answers, it calls fk. Otherwise, it calls sk with the first answer and the rest of the

space. This function is similar to an eliminator of spaces, hence the name. The remaining functions are as before.

Kiselyov et al. [6] have demonstrated that aMonadPlus hides in implementations of logic programming systems.

BFSimp is not an exception: append-map∞f air is like bind, but takes arguments in reversed order; none, unit, and

append∞f air correspond to mzero, unit, and mplus, respectively.

Towards a miniKanren with fair search strategies • 1:11

#| → Space |#

(define (none)

`(() . #f))

#| State → Space |#

(define (unit s)

`((,s) . #f))

#| (→ Space) → Space |#

(define (step f)

`(() . ,f))

#| Space × Space → Space |#

(define (append∞f air s∞ t∞)

(cons (append (car s∞) (car t∞))

(let ((t1 (cdr s∞)) (t2 (cdr t∞)))

(cond
((not t1) t2)

((not t2) t1)

(else (lambda () (append∞f air (t1) (t2))))))))

#| Goal × Space → Space |#

(define (append-map∞f air g s∞)

(foldr

(lambda (s t∞)

(append∞f air (g s) t∞))

(let ((f (cdr s∞)))

(step (and f (lambda () (append-map∞f air g (f))))))

(car s∞)))

#| Maybe Nat × Space → [State] |#

(define (take∞ n s∞)

(let loop ((n n) (vs (car s∞)))

(cond
((and n (zero? n)) '())

((pair? vs)

(cons (car vs)

(loop (and n (sub1 n)) (cdr vs))))

(else (let ((f (cdr s∞)))

(if f (take∞ n (f)) '()))))))

Fig. 6. New and changed functions in BFSimp that implements pure features

1:12 • Kuang-Chen Lu, Weixi Ma, and Daniel P. Friedman

#| Space × (State × Space → Space) × (→ Space) → Space |#

(define (elim s∞ fk sk)

(let ((ss (car s∞)) (f (cdr s∞)))

(cond
((pair? ss) (sk (car ss) (cons (cdr ss) f)))

(f (step (lambda () (elim (f) fk sk))))

(else (fk)))))

#| Goal × Goal × Goal → Goal |#

(define (ifte g1 g2 g3)

(lambda (s)

(elim (g1 s)

(lambda () (g3 s))

(lambda (s0 s∞)

(append-map∞f air g2

(append∞f air (unit s0) s∞))))))

#| Goal → Goal |#

(define (once g)

(lambda (s)

(elim (g s)

(lambda () (none))

(lambda (s0 s∞) (unit s0)))))

Fig. 7. New and changed functions in BFSimp that implement impure features

Nowwe compare the pure subset of BFSimp with BFSser . We focus on the pure subset because BFSser is designed

for a pure relational programming system. We prove in Coq that these two search strategies are semantically

equivalent, since the result of (run n ? g) is the same either way. (See the GitHub repository for the formal

proofs.) To compare efficiency, we translate BFSser ’s Haskell code into Racket. (See the GitHub repository for

the translated code.) The translation is direct due to the similarity of the two relational programming systems.

The translated code is longer than BFSimp . And it runs slower in all benchmarks. Details about differences in

efficiency are in section 7.

7 QUANTITATIVE EVALUATION
In this section, we compare the efficiency of the search strategies. A concise description is in Table 2. A hyphen

means “running out of 500 MB memory”. The first two benchmarks are from TRS2. reverso is from Rozplokhas

and Boulytchev [8]. The next two benchmarks about generating quines are based on a similar test case in Byrd

et al. [2]. We modify the relational interpreters because we don’t have disequality constraints (e.g. absento). The
sibling benchmarks differ in the conde clause order of their relational interpreters. The last two benchmarks are

about synthesizing expressions that evaluate to ’(I love you). They are also based on a similar test case in

Byrd et al. [2]. Again, we modify the relational interpreters for the same reason. And the sibling benchmarks

Towards a miniKanren with fair search strategies • 1:13

benchmark size DFSi DFSbi DFSf BFSimp BFSser
very-recursiveo 100000 184 180 510 554 1328

200000 409 249 984 1063 2477

300000 520 549 2713 2344 5815

appendo 100 25 26 24 23 89

200 196 202 179 183 172

300 556 536 540 560 524

reverso 10 5 5 5 25 48

20 46 48 47 4363 5145

30 434 419 436 106746 151759

quine-1 1 109 123 28 - -

2 289 308 71 - -

3 522 541 99 - -

quine-2 1 23 23 12 - -

2 52 51 24 - -

3 80 75 34 - -

’(I love you)-1 999 76 96 64 260 635

1999 158 210 115 332 669

2999 453 330 279 331 672

’(I love you)-2 999 733 326 63 276 639

1999 1430 859 114 334 674

2999 2496 1137 280 327 683

Table 2. The results of a quantitative evaluation: running times of benchmarks in milliseconds

differ in the conde clause order of their relational interpreters. The first one has elimination rules (i.e. application,

car, and cdr) at the end, while the other has them at the beginning. We conjecture that DFSi would perform

badly in the second case because elimination rules complicate the problem when synthesizing (i.e., our evaluation

supports our conjecture.)

In general, variants of DFS usually performs better than BFS. The reason might be that BFS tends to remember

more states at the same time. Among the three variants of DFS, which all have unfair conj, DFSf is most resistant

to clause permutation in quines and ’(I love you)s, followed by DFSbi then DFSi . Thus, we consider DFSbi
and DFSf competitive alternatives to DFSi . Among the two implementations of BFS, BFSimp constantly performs

as well or better.

8 RELATED RESEARCH
In this section, we describe related research. Yang [10] points out that a disjunct complex would be ‘fair’ if it were

a full and balanced tree. Seres et al. [9] describe BFS. We present another implementation. Our implementation is

semantically equivalent to theirs. But, ours is shorter and performs better in comparison with a straightforward

translation of their Haskell code. Rozplokhas and Boulytchev [8] address the non-commutativity of conjunction,

while our work about disj fairness addresses the non-commutativity of disjunction.

9 CONCLUSION
We analyze the definitions of fairness. Implementation of disj can be fair, almost-fair, or unfair, depending on

how evenly it allocates computational resources to spaces related to disjunctive goals. Implementation of conj

1:14 • Kuang-Chen Lu, Weixi Ma, and Daniel P. Friedman

can be fair or unfair, depending on how evenly it allocates computational resources to spaces related to states in

the same bucket. Our definition of fair conj, unlike the one by Seres et al. [9], is orthogonal with completeness.

We devise two new search strategies (i.e., DFSbi and DFSf) and devise a new implementation of BFS, BFSimp .

These strategies have different features in fairness: DFSbi has an almost-fair disj and unfair conj. DFSf has fair

disj and unfair conj. BFS has both fair disj and fair conj. No search strategy here combines unfair disj and
fair conj. This is because we haven’t seen a case where these kinds of search strategies would be interesting.

Our quantitative evaluation shows that DFSbi and DFSf are competitive alternatives to DFSi , the current

miniKanren search strategy, and that BFSimp is more practical than BFSser .

We prove formally that BFSimp is semantically equivalent to BFSser . But, BFSimp is shorter and performs better

in comparison with a straightforward translation of their Haskell code.

Although there are very few benchmarks, this is preliminary work where we are making a point that certain

levels of fairness come without cost in some cases, and that each of the search strategies: DFSi , DFSbi , DFSf , and

BFS, can co-exist inside one’s head. Constructing a miniKanren with all levels of fairness is future work.

ACKNOWLEDGMENTS
We thank the program committee for their insightful observations. We also thank our reviewers, both known

and anonymous, for their corrections and suggestions.

REFERENCES
[1] Benjamin Strahan Boskin, Weixi Ma, David Thrane Christiansen, and Daniel P. Friedman. 2018. A Surprisingly Competetive Conditional

Operator: for miniKanrenizing the Inference Rules of Pie (Scheme ’18). St Louis, MO, USA.

[2] William E Byrd, Michael Ballantyne, Gregory Rosenblatt, and Matthew Might. 2017. A unified approach to solving seven programming

problems (functional pearl). Proceedings of the ACM on Programming Languages 1, ICFP (2017).

[3] Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov. 2005. The Reasoned Schemer. The MIT Press.

[4] Daniel P. Friedman, William E. Byrd, Oleg Kiselyov, and Jason Hemann. 2018. The Reasoned Schemer, Second Edition.
[5] Jason Hemann, Daniel P. Friedman, William E. Byrd, and Matthew Might. 2016. A small embedding of logic programming with a simple

complete search. In Proceedings of the 12th Symposium on Dynamic Languages - DLS 2016. ACM Press. https://doi.org/10.1145/2989225.

2989230

[6] Oleg Kiselyov, Chung-chieh Shan, Daniel P Friedman, and Amr Sabry. 2005. Backtracking, interleaving, and terminating monad

transformers:(functional pearl). ACM SIGPLAN Notices 40, 9 (2005), 192–203.
[7] Dmitry Kosarev and Dmitry Boulytchev. 2018. Typed embedding of a relational language in OCaml. arXiv preprint arXiv:1805.11006

(2018).

[8] Dmitri Rozplokhas and Dmitri Boulytchev. 2018. Improving Refutational Completeness of Relational Search via Divergence Test. In

Proceedings of the 20th International Symposium on Principles and Practice of Declarative Programming. ACM, 18.

[9] Silvija Seres, J Michael Spivey, and C. A. R. Hoare. 1999. Algebra of Logic Programming.. In ICLP. 184–199.
[10] Edward Z. Yang. 2010. Adventures in Three Monads. The Monad. Reader Issue 15 (2010), 11.

https://doi.org/10.1145/2989225.2989230
https://doi.org/10.1145/2989225.2989230

	Abstract
	1 introduction
	2 search strategies and fairness
	2.1 Fair disj
	2.2 Fair conj

	3 interleaving depth-first search
	4 balanced interleaving depth-first search
	5 fair depth-first search
	6 breadth-first search
	7 quantitative evaluation
	8 related research
	9 conclusion
	References

