Emily Fox

Automated Canon Composition

Computer Science Tripos — Part 11

Churchill College

May 10, 2016

Proforma

Name: Emily Fox

College: Churchill College

Project Title: Automated Canon Composition
Examination: Computer Science Tripos — Part 11, 2015-16
Word Count: 115771

Project Originator: Dr Samuel Aaron
Supervisor: Dr Samuel Aaron

Original Aims of the Project

To make an extension to Sonic Pi[4] that is able to generate musical canons[24] and play
them back to the user. In line with the design aims of Sonic Pi, the extension should be
ready for use by non-technical users. In addition, the canons played should be randomly
generated using Sonic Pi’s deterministic randomisation features in order to get different
canons when different seed values have been specified. It should be possible to specify
certain aspects of the resulting canons, for example the key and range of notes used.

Work Completed

An extension to Sonic Pi, implemented in Ruby, that allows canons to be generated with a
single line of code. The user can specify key, note range, distribution of note lengths, canon
type, length, number of voices, number of repeats, sounds used, maximum size of ‘jumps’
in pitch, offset between voices, voice transposition, number of repeats and time signature.
The types of canon supported are: rounds[28], crab canons[26] and palindromes[27]. The
extension to enable the pieces to be exported to Lilypond[1] for typesetting has also been
completed.

1This word count was computed using TeXcount: http://app.uio.no/ifi/texcount/index.html

http://app.uio.no/ifi/texcount/index.html

Special Difficulties

None.

Declaration

[, Emily Fox of Churchill College, being a candidate for Part II of the Computer Sci-
ence Tripos, hereby declare that this dissertation and the work described in it are my
own work, unaided except as may be specified below, and that the dissertation does not
contain material that has already been used to any substantial extent for a comparable
purpose.

Signed
Date

Contents

Introduction
1.1 Project Overview
1.1.1 Project Aims
1.1.2 Success Criteria
1.2 Algorithmic Composition Overview
1.2.1 Stochastic Processes: Markov Chains
1.2.2 Artificial Intelligence: Neural Networks
1.2.3 Evolutionary Techniques: Genetic Algorithms
1.2.4 Knowledge and Rule-Based Techniques
1.2.5 The Place of this Project
Preparation
2.1 Logic Programming
2.1.1 MiniKanren
2.2 Music Theory Background oo
2.2.1 Representation of Notes
222 Keysand Scales o
223 Chords e
2.3 Canons
2.4 Deterministic Randomisation oL,
2.5 Defining Note Compatibility
Implementation
3.1 The Logic Approach
3.2 Stages of Development oL
3.2.1 Development Methodology
3.2.2 Imitial Approach: Bottom-up L.
3.2.3 The Introduction of ‘Variations”
3.2.4 Unification in a Single Pass
3.3 The Algorithm
3.3.1 Choosing a Chord Progression
3.3.2 Serialising the Chord Progression
3.3.3 Rhythmic Variation 0.
3.4 My Implementationo

15
15
15
16
16
17
17
17
17
18

19
19
19
21
21
22
23
23
25
26

3.4.1 DModifications to MiniKanren
3.4.2 User Interface
3.4.3 Choosing Parameters
3.4.4 Generating the Scale 000
3.4.5 Generating the Chord Progression
3.4.6 Generating the Variation Random Variables
3.4.7 Creating the Internal Melody Structure
3.4.8 Serialising the Chord Progression
3.4.9 Adding Rhythmic Variation
3.4.10 Exporting to Lilypond
3.5 An Optimisation
4 Evaluation
4.1 Success Criteria
4.1.1 First Criterion: Generates Canons
4.1.2 Second Criterion: Properties
4.1.3 Third Criterion: Interface
4.1.4 Fourth Criterion: Usability
4.2 Analysis of Findings from the User Study
4.2.1 User Study Structureo
422 Results.
4.3 Timings
4.3.1 Method of Evaluation
4.3.2 Results.
4.4 Musicality of the Generated Pieces
4.4.1 Method of Evaluation
442 Results.
4.4.3 Significance of the Results
4.5 SUMMATY . . o o v vt et e e e e
5 Conclusion
5.1 Achievements
5.2 Further Work
5.3 Concluding Remarks oo
Bibliography
A User Study
A.1 Instruction Booklet
A.2 Consent and Questionnaire
A3 Results Data
A.3.1 User Experience
A.3.2 Numerical Scores
A.4 Canons Generated
A41 Audio Files

43
43
43
45
48
48
49
49
20
23
23
53
95
95
25
o8
58

59
99
60
60

60

B Musicality Data
B.1 Numerical Scores

B.2 Comments

C Project Proposal

10

List of Figures

2.1
2.2
2.3

2.4

2.5

2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2

4.3
4.4
4.5

4.6

The adopted naming convention.
A stave with its features annotated. o0
A chromatic scale over two octaves, the first octave with sharps and the
second with the equivalent flats. C major and minor scales, and D major
and minor scales. Note that these are a subset of the chromatic, following
the defining major and minor patterns.
A visual demonstration of how the notes of the major and minor keys relate
to each other. It shows the gap between notes in semitones, where the notes

are represented using the roman numeral for their position within the scale.

Constructing chords from the C major scale. Note that the final chord has
the note order switched.o
An example of (the opening of) a canon. Notice how the voices are identical
but delayed in time. FEditor: Gustav Nottebohm (18171882); Publisher
Info.: Wolfgang Amadeus Mozarts Werke, Serie VII: Lieder und Kanons,
Bd.2, No.43 (pp.4) Leipzig: Breitkopf € Hrtel, 1877. Plate W.A.M. 230.
Copyright: Public Domain.

The original, bottom-up algorithm.
A flowchart of the general algorithm used.
A diagram of how a chord progression ensures note compatibility.
How chords are ‘serialised’. L.
A melody before and after adding rhythmic variation.
A flowchart of my implementation of the algorithm.
A diagram showing the internal representation of a melody.

Canon Creator meets the first success criterion.
Canon Creator exceeds the first success criterion. The second voice is an
octave lower (shown by the bass clef and repositioning of notes) and has a
single bar offset. o
Canon Creator meets the second success criterion.
Canon Creator meets the second success criterion.
The average scores given by eight users when comparing creating canons
using the two methods. oo
The average run times for some canon queries.

11

4.7

4.8

Overall scores for the musicality of the two classes of canons. The second
graph excludes one of the participants’ melody scores for the DIY canon
because it is an anomaly (as evidenced by the comment claiming that it is
a canon that ‘no one would write’ by the student marking the piece) and
causes the variance to be very large. The DIY method does marginally
better in the rhythm and melody categories, but worse in the canon cate-
gory. In the second graph, DIY’s overall score is actually marginally higher
Canon Creator’s, emphasising the fact that the scores are very similar.
The scores given to each canon for their ‘suitablility as a canon’, and the
average for each class.o

12

13

Acknowledgements

Acknowledgement and thanks go to the following people for their welcome contribu-

tions:

Dr Samuel Aaron for supervising me on this project

William Byrd for his help and advice with MiniKanren, particularly the development
of the ‘project’” function

Stefaan Himpe for his previous work upon which I built my algorithm|[15]
Dr Alan Blackwell for his advice regarding the user studies and evaluation

Tom Ainge and Jonathan Mash for their help with analysing the canons created
during the user study

All the people who participated in the user study.

14

Chapter 1

Introduction

My project is concerned with algorithmic composition of music, within the specific domain
of musical canons|24]. My chosen method of implementation (dubbed, ‘Canon Creator’)
is based on logic programming and music theory techniques, the reasons for which are
outlined in section 3.1.

I have successfully implemented an extension to Sonic Pi[4] which enables the user to
generate a canon using a single line of code. Users may specify the properties of the canon
manually, and Sonic Pi’s deterministic randomness will choose those left unspecified, as
well as generating the underlying canon. Therefore changing the seed changes the output
and I have met all the success criteria for this project.

In addition, I implemented an extension enabling the canons to be exported to Lilypond[1]
for typeset music notation, examples of which can be found in section 4 and appendix
A4 (the latter having been manually converted to a single file for conciseness).

1.1 Project Overview

1.1.1 Project Aims

The aim of this project was to make an extension for Sonic Pi that facilitates the creation
of musical canons by non-technical users for inclusion in their Sonic Pi projects. The
three main stages involved in designing the system were:

1. Solidifying the aims by defining the success criteria.
2. Developing an internal representation of a canon and associated constraints.

3. Designing the user interface.

15

16 CHAPTER 1. INTRODUCTION

1.1.2 Success Criteria

The project proposal (appendix C) contains the success criteria, that is the minimum fea-
tures the software must exhibit to be deemed successful, as well as some useful additions.
These are outlined below.

Non-negociable

A concise summary is given below, for the full criteria see appendix C.
e Canons can be generated, satisfying the requirements for a ‘round’[28].
e Canon properties can be specified explicitly.
e An interface exists within Sonic Pi for using the software.
e Users are able to create canons using the extension.

These define the minimal aims of the project, and give a good foundation for further
extensions.

Ideal characteristics

In practice, the timings of the software affect its success. Sonic Pi is used for live cod-
ing and it should be possible to incorporate canons generated into those compositions.
Moreover, Sonic Pi enforces temporal semantics[5] to ensure that threads do not get out
of time with each other (creating audible discrepancies in rhythm). A long computation
time would violate these semantics and so the thread running the software would be killed
with a timing exception. For these reasons, the computation time should be well within
the schedule ahead time of Sonic Pi, which by default is 0.5 seconds.

It is also preferable that the generated pieces are ‘musically interesting’. I define this as
having no more than four consecutive notes of the same pitch, nor all of the beats having
the same rhythm. This is a minimum requirement however, and where more detailed
analysis is required I use the judgments of music students. The caveat to this second
approach is its subjectivity, although the nature of western music means that to some
extent this is unavoidable if meaningful measures are to be constructed.

1.2 Algorithmic Composition Overview

I will now give a brief overview of some of the work that has already been done within
the field of algorithmic composition, and outline where this project fits with these.

1.2. ALGORITHMIC COMPOSITION OVERVIEW 17

1.2.1 Stochastic Processes: Markov Chains

Markov chains have had moderate success, particularly towards the beginning of research
in this field[6]. In general, n-th order chains are used to give a model for music generation
with the built in assumption that a note depends on its n predecessors. The transition
properties can be learned from training on test pieces, or by hard coding them using music
theory based trial and error.

Where this approach has worked well has been in generating melodies due to the local
statistical properties they possess. However longer pieces tend to have little consistent
structure throughout the piece because of the local, rather than global, dependencies.
This can be mitigated by using high values of n, but this leads to a tendency to reproduce
melodies found in the training set. For this reason Markov chains have had greater success
providing a source of new material to aid human composers, rather than in generating
full compositions[12].

1.2.2 Artificial Intelligence: Neural Networks

Various machine learning algorithms based on neural networks have been implemented,
the first of which was implemented by Todd in 1989[22], with many other variations
since[12]. This is a form of supervised learning where layers consisting of artificial neurons
within the network learn their associated probabilities (are trained) using techniques such
as back propagation to create a system that models the composition process.

This approach relies on a collection of data being available for training, that consists of
compositions in the musical style being modeled.

1.2.3 Evolutionary Techniques: Genetic Algorithms

Essentially, genetic algorithms work by finding efficient ways to solve a search problem
with an unstructured search space. Initially random solutions are generated and then
combined in order to converge on an optimal one[17].

For music composition, a set of random melodies are generated (motives) or provided by
the user, and then combined to make longer phrases and to generate countermelodies|8].
Measures are given for ‘good’ and ‘bad’ melodies to evaluate each motive. ‘Good’ ones are
kept to be combined further whilst the ‘bad’ ones are abandoned, ensuring convergence
on a final piece that equates to a ‘good’ solution.

1.2.4 Knowledge and Rule-Based Techniques

A family of algorithms have been explored which involves representing knowledge about
musical composition as a set of structured symbols. In general, knowledge can either be
hard coded into the program or learning techniques used to acquire it. The earliest well

18 CHAPTER 1. INTRODUCTION

known example of a system using these techniques was developed in 1958[14] by encoding
the classical rules of counterpoint.

A popular realisation of this technique has been encoding musical knowledge as logic con-
straints and then generating pieces using constraint satisfaction approaches. For example,
E. Morales and R. Morales worked on a technique that used inductive logic programming
in order to find a hypothesis which generates the given example pieces. This is a combi-
nation of logic programming and machine learning[18].

More recently, fuzzy logic[30] and probablisitic logic[13] have been explored, because these
reflect the ‘soft’ classification that exists in music due to its inherent subjectivity.

1.2.5 The Place of this Project

This project fits within the domain of knowledge and rule-based systems. I used logic
programming for constructing the melodies with all the knowledge about musical structure
built into the source code. My work differs to the first two examples given above because
I do not employ any kind of machine learning, nor is there any evolution of solutions as
is found in genetic algorithms. The rules and knowledge that built in is based on music
theory, the relevant parts of which are outlined in section 2.2.

In addition to logic, I built on the deterministic randomness functionality in Sonic Pi
to choose pitches and durations. In this sense, my solution acts a little like a Markov
process with a single state for choosing the rhythms of each beat, and the pitches undergo
a similar process except with the added constraints given by the harmonies that they
create. However, my approach differs greatly to the n-th order Markov model in that my
model is not based on probabilistic dependencies between states but rather on random
choice from within a constrained domain.

In the next section I will cover the foundations of music theory and logic programming
which underpin the project.

Chapter 2

Preparation

First I will cover the logic programming concepts used in the project, including the role of
MiniKanren. Then I will look at the music theory required to understand the algorithm,
before discussing the use of deterministic randomness and why it is important here.

2.1 Logic Programming

Logic programs generally consist of statements expressed as formulae (called constraints),
which can then be verified and/or substitutions found for logic variables to make these
statements true[21]. In the case that the statements cannot all be satisfied the program
is termed inconsistent. The computer uses rules of inference in order to determine which
constraints hold and to find assignments that satisfy them. A program run will either
return SUCCESS, with at least one substitution for the logic variables, or FAIL if none
exist.

The only form of constraint that is relevant for this project is unification. A successful
unification of two logic variables means that they map to the same underlying object, or
have the same substitution in the current context. For example, a logic variable A can
be unified with 3, nil or any other value in the program, but then could not be further
unified with 4 if this contradicts the first unification, e.g. 3 # 4.

The way in which the program searches for an answer depends on the language and
implementation. Prolog[2] generally implements a depth first search with backtracking
for example, whereas MiniKanren[10] chooses to operate on streams of data, sharing the
time between them in some pre-specified proportion.

2.1.1 MiniKanren

MiniKanren is a domain specific logic programming language[23|, and has been imple-
mented in many different languages[10]. Tts most prevalent implementation is written in
Scheme where most of the research is active.

19

20 CHAPTER 2. PREPARATION

Sonic Pi is written in Ruby so a Ruby implementation was needed for this project. I used
Sergey Pariev’s implementation[19] since it was the most complete version available at
the start of the project. However, the implementation was not adequate for my purposes
so I had to modify it. I have since pushed my changes to the main repository, so they are
now featured in the main Ruby implementation of MiniKanren[19]. These additions are
detailed in section 3.4.1.

MiniKanren usage

Using MiniKanren in Ruby requires the following steps:
1. Creation of a MiniKanren block.
2. Creation of fresh variables.

3. Addition of constraints between the variables. conde(argl, arg2) acts as logical
OR while all(argl, arg2, arg3, ...) corresponds to logical AND.

4. Evaluation of the query.

Below is an example program.

-
require ’mini_kanren’

results = MiniKanren.exec do # Create the MiniKanren block.
X, y, z = fresh(3) # Create three new fresh variales.
q = fresh # Create a new query variable.

Create an array of contraints.

constraints = [
conde (eq(x,y) ,eq(x,2z)), # x =y OR x = z
eq(y,5) # y = 5.

]

Run the query (unify g with the array containing x, y and z).
run(q, eq(q, [x, y, z]), *constraints)
end

puts results

output: [[5, 5, "_.0"], ["_.0", 5, "_.0"]].

i.e. either:

OR
2) y = 5 AND x = z (unconstrained).

#
#
1) x =y =5, z is unconstrained
#
#

Listing 2.1: An example of a simple MiniKanren program.

2.2. MUSIC THEORY BACKGROUND 21

Notation Note Octave | MIDI number
gbs g flat 5 78
eb4d e flat 4 63
cs3 ¢ sharp 3 49
fsb f sharp 5) 78
c3 ¢ natural 3 48
d d natural 4 62

:as3 :fs4 1gsd :as4
. -] >l - - e - - > > > 1ol | > > 124 |- - - .

Figure 2.1: The adopted naming convention.

2.2 Music Theory Background

I will now outline the minimal amount of music theory needed for a sufficient understand-
ing of this project.

2.2.1 Representation of Notes
Letter notation

Each octave contains every note, with the same notes in consecutive octaves found by
doubling/halving the frequency. An octave has twelve notes, the frequencies having been
split evenly to get the equitempered[7] scale. Each pair of consecutive notes is separated
by a semitone.

Every note has a pitch (how high or low it sounds, related to its frequency) and a duration
(how long it sounds for). The pitch can be represented by a letter name (from a to g),
and then natural, sharp (raised a semitone, denoted s) or flat (a semitone lower, denoted
b), where natural is assumed if not explicitly given.

To represent the octave, a number is written after the letter. The convention adopted
here (as in Sonic Pi) is that octave boundaries occur at every C, with middle C being
represented by :c4. This notation is summarised in figure 2.1.

MIDI notation

When dealing with computers, it is helpful to have a numerical representation. The
standard for this is MIDI (Musical Instrument Digital Interface) which uses numbers
ranging from 0 to 127, with each increment representing a semitone increase in pitch.
Middle C corresponds to MIDI number 60.

22

CHAPTER 2. PREPARATION

Treble clef Semiquaver _Crotchet _Quaver
1 7’ ‘ ' - -
2\ ' /2 -
®
1 y _I' »
e/ 3 L. @— N4 k)
] So ~ ’
1 Ss RS e
Key signature Time signature *Bar lines (to”
(Eb minor) (3/4) separate the bars)

Figure 2.2: A stave with its features annotated.

Stave notation

The important concepts in stave notation are the notes, staves, clefs, time signature and

key signature . Each is explained below.

e Notes: the circles sitting on/ in between the lines. The notes with no bar across

are crotchets (quarter notes), those with a single bar are quavers (eighth notes) and
those with two bars are semiquavers (sixteenth notes).

Stave: the set of horizontal lines across the page. FEach line represents a pitch and
notes can go or in between the lines. They can also go above or below the five lines
that are permanently there, and add extra (ledger) lines in order to do so.

Clefs: the symbol at the beginning of each line specifying the pitch each horizontal
line corresponds to. Roughly, the bass clef is lower and the treble clef is higher.

Time signature: how many beats are in a bar, and how long those beats last. The
ones we consider here are just 3/4 and 4/4, which mean three crotchets' per bar and
four crotchets per bar respectively.

Key signature: this specifies which notes are played sharp, or flat. The sharp/flat
signs are in the position of the notes that are affected. See 2.2.2.

Figure 2.2 provides an annotated diagram.

2.2.2 Keys and Scales

Not every note is used in every piece; each piece of music has a key which determines the
allowable notes. A key is specified by a note (the tonic) and a type (major or minor).

The notes of the key make up a scale when played in order of pitch.

To build up the scale of a major key we start with the MIDI number of the tonic, call it
x, then choose the notes z,x + 2,2 + 4,z + 5,2+ 7,2 + 9,2 + 11. For a (natural) minor
key, the notes z,x+ 2,2+ 3,2+ 5,2+ 7,2+ 8,z + 10 are selected. These patterns repeat

LQuarter notes.

2.3. CANONS 23

(flats and explicit naturals)

A chromatic scale (sharps) o be h . l),. he l)p.h
ANV 3 | | | I II = # l I I
0y o e mﬁ '
‘ Q € major |4#_-!__‘] ‘#._l'_;
—T—7T il 7 m—— I — — — il —
J o o ° o o ’®
C minor (natural)
6 po D major
A i i # o i ! ! o |
[(an iy o .P lP_;H"P ! - o ,F_b" o !

D minor (natural)

Figure 2.3: A chromatic scale over two octaves, the first octave with sharps and the second
with the equivalent flats. C major and minor scales, and D major and minor scales. Note
that these are a subset of the chromatic, following the defining major and minor patterns.

in every octave. Figure 2.3 shows a chromatic scale (every note included) and then scales
in the keys of C and D major and minor, using stave notation for comparison.

Note that the major and minors scales are the same sequence of notes with different
starting positions, resulting in a cyclical pattern. Figure 2.4 demonstrates this.

2.2.3 Chords

Any group of notes is a chord. Technically any combination of notes will produce a chord,
however music theory defines some rules to create standard ones.

A chord is defined by a number, n, and a key. The lowest note of a chord is the n-th note
of the key’s scale. The second and third notes are then the (n+2)-th and (n+4)-th notes
of that scale. This is shown in figure 2.5.

The chords are named using the roman numeral representation for the number, n, re-
quired. This project only deals with the chords I, IV, V and VI.

2.3 Canons

A canon is a piece of music with multiple voices playing the same melody (or variations
of a melody) starting at different offsets in time. Figure 2.6 has an example.

Some of the most famous canons were written by Bach in the early 1700s, constructed
using the rules of counterpoint[25]. The canons in this project are different insofar as they
are not concerned with counterpoint; the ones developed here contemporary in style with
fewer rigid constraints.

24 CHAPTER 2. PREPARATION

«£olpul

Figure 2.4: A visual demonstration of how the notes of the major and minor keys relate to
each other. It shows the gap between notes in semitones, where the notes are represented
using the roman numeral for their position within the scale.

Figure 2.5: Constructing chords from the C major scale. Note that the final chord has
the note order switched.

2.4. DETERMINISTIC RANDOMISATION 25

/ = - kh' T } t T
. ﬁ_ﬁa:—,ﬁbf—_vcf—_ﬁ——n”ﬁru] e e e . 2 e |
”l.Shmme. %‘, I {’) T — I ! FM H 7 f f
T T I T T
: Se _lig, se _ lig al _ le, al _ - e, bm:_]igt se. lig sie, die im Herrn ent.
[hae i~ i | -
. 1 - w— i i e Tt — Tt =
2.Stimme. 13?‘1 = 1 £ e — e
- - —1
\ Ja, se lig, se - lig al. - le, se_lig, se_lig sie,
/ o . '
l"‘ l,[n 1 ; r A 0 1 T 1.4]
: e tx = % 55 5 ——
) { } % 1 L ll + 1 T [I T T I I % lrl { 1)
<7 schlie - fen! Auch se - - lig, se _ lig, Freund, bist du. En . gel brach-ten dir den Kranz,
P 2 Py o
s e L i t A T—ta—— = —r
; ; ; 1 1 1 I T T T 1 1 ha i1 124 1 { 4=
{ { { { 1 1 1 1 T 1 1 I : :
NY die im Herrn ent_schlic - fen! Auch se _ - lig, se _ lig, Freund, bist du. En _ gel

Figure 2.6: An example of (the opening of) a canon. Notice how the voices are identical
but delayed in time. FEditor: Gustav Nottebohm (18171882); Publisher Info.: Wolfgang
Amadeus Mozarts Werke, Serie VII: Lieder und Kanons, Bd.2, No.43 (pp.4) Leipzig:
Breitkopf € Hrtel, 1877. Plate W.A.M. 230. Copyright: Public Domain.

The types of canon this project is concerned with are:
e Rounds: Identical voices, each starting at some offset from the previous one.

e Crab: Has the additional property that the melody plays against itself in retrograde

(backwards) at least once during the piece.

e Palindrome: Sounds the same whether played backwards or forwards.

2.4 Deterministic Randomisation

An important feature of Sonic Pi is its ability to exhibit deterministically random be-
haviour. Its utility in this context comes from the fact that it allows reproducibility of
the canons if a user finds one they like. Since the output of Canon Creator is aural only
(unless it’s exported to Lilypond, but even then it cannot be imported back into Sonic Pi
to be played again?), there would be no way for them to recreate any melodies they like

again if it were truly random.

The seed value can be set using Sonic Pi’s inbuilt function, use_random_seed n. This
dictates the starting point for generation of pseudo-random numbers, and therefore fully
constrains what all the calls to the random functions (.choose, .rand etc.) will return.
Since these functions are used in a sequential order dependent on the properties that must
be generated randomly at the start, there is no correlation in a musical sense between the
canons generated by Canon Creator with different seeds. In other words, there is no way

of fine tuning a canon based on its seed.

2This is a possible unimplemented extension, that would allow arbitrary pieces of music available as

Lilypond source to be directly imported into Sonic Pi.

26 CHAPTER 2. PREPARATION

2.5 Defining Note Compatibility

For the purposes of this project, I define two notes to be compatible if they are in the same
chord. This means that they will be complementary (consonant) rather than clashing
(dissonant) and music theory says that that will sound good together in isolation. This
convention is adopted from now on.

In the next chapter I explain the implementation of Canon Creator, and justify my ap-
proach.

Chapter 3

Implementation

This chapter firstly discusses why I chose to use logic programming, including some of
successes and shortfalls of the various stages during the project’s development. I then
explain the modifications I made to the MiniKanren implementation to make it suitable for
purpose before explaining the final algorithm and my implementation in more detail.

3.1 The Logic Approach

While it is entirely possible to write a solution to this task that does not involve logic
programming (see S. Himpe’s Python implementation for an example[16]), there are a
few of features of the problem that lend themselves to a logic approach.

Firstly, the music to be generated has key features that can be well defined (see 2.5). This
means that what it means for the whole piece to conform to these rules can be built up
using simple constraints on the logic variables representing notes, which is a neat way of
viewing the problem. Similarly, the structure of the canon is well defined, again making
finding notes to constrain both possible and concisely expressible.

Moreover, the nature of logic programming means that many solutions can be generated
from one set of constraints. While this has not been fully utilised in this project, it is easy
to see where this might be beneficial. For example, multiple solutions could be generated
before being auditioned and assessed against some heuristic that is a measure of how good
that piece is to ensure that better results are returned more often.

3.2 Stages of Development

In this section I explain my development methodology and then examine the approach
used in some key iterations of the project.

27

28 CHAPTER 3. IMPLEMENTATION

3.2.1 Development Methodology

When starting the project there were many unknowns because I had very little experience
with any of the technologies that I was using, including having to learn both Ruby and
MiniKanren from scratch. Nor did I have a precise version of the algorithm to work
with as I was inventing the algorithm myself. For these reasons, I adopted an agile
methodology[11] to make sure that issues were exposed early on before too much time
had been invested in an algorithm that could not deliver.

I divided the work into two-week intervals and planned the work accordingly, taking into
account vacations and other commitments. I included some scheduled catch up time to
allow flexibility. These measures turned out to be very useful because, especially near the
start of the project, there were some issues with the algorithm that led to developing a
completely different approach. This extra scheduled time meant that these issues did not
have a major detrimental impact on project progress.

3.2.2 Initial Approach: Bottom-up

The approach I had initially suggested is summarised by figure 3.1. The idea was to start
with a list of logic variables representing notes and then to constrain them in duration
and pitch to ensure that overlapping ones were compatible.

This approach did yield some canons- thousands could be generated on each run- however
they consisted of mostly the same note, certainly failing the musicality test in 1.1.2. While
it would have been possible to add more constraints to prevent this, it would in practice
amount to over constraining the piece and infeasible run times due to its ‘generate-and-
test” nature on the large search space.

As it was, this approach was very tricky to code in such a way that it terminated in
reasonable time (< 1hr). The inefficiencies arose from dealing with the arithmetic of
durations, and the unconstrained domain of the pitches. Solutions had to be generated,
their variables ‘projected’ (their value found in the current substitution) and then dis-
carded if overlapping notes were not compatible. Where this did terminate, it led to lots
of repetition from all variables being constrained in the same way and evaluated in the
same order.

Under this paradigm, all the possible pitches for a note are tried in turn in the order
given by the constraint. Even with only eight possible pitches (one octave), this means
a lot of options must be tried before an overall substitution is found satisfying the con-
straints.

At this point T searched for existing algorithms and discovered Stefaan Himpe’s work|[15].
He had overcome this problem by building in more knowledge of music theory from the
start- a more top-down approach- and so I adapted this for use with logic programming.
His algorithm is described in 3.3.

3.2. STAGES OF DEVELOPMENT

Create structure

List of logic variables
representing the notes

Jom
lUm’fy

Generate constraints between
the notes (rhythm and pitch)

l Generate solutions

A canon melody

0.5 05 0.25 025 1
length

Schedule

Play canon

Figure 3.1: The original, bottom-up algorithm.

30 CHAPTER 3. IMPLEMENTATION

3.2.3 The Introduction of ‘Variations’

When [first successfully generated full length canons, the results suffered from the same
limitations that the Markov chain models do with too small a value of n (see 1.2.1). That
is, the piece appears to wander aimlessly over time because there are no dependencies
between the separate parts of the music. To fix this, I introduced the idea of variations
which were simply melodies the length of the chord progression which could be combined
to make a complete piece.

I populated an array of variations (themselves a 2D array of bars and beats) such that
each pair worked together (and also in reverse for crab and palindrome canons). I then
scheduled them sequentially by randomly picking ones, alternating backwards and for-
wards for the crab canons or mirroring each half of the piece for the palindromes. This
successfully generated canons based on those variations, but only when the number of
variations was low (about three) and the piece was short- no more than a few bars. In
addition, Sonic Pi’s schedule ahead time had to be increased dramatically in order to get
any results.

The main reason for this bad scaling was the requirement that all variations had to work
with every other one rather than just the neighboring bars- this is order n? in the number
of variations. Moreover, the constraint that the final note of each must be the tonic meant
that a very large range of notes was needed to end on a different tonic for every variation.
This is neither feasible nor encouraged musically for the number of variations required for
a piece that is not just the same melody played with itself multiple times.

To fix this I could have set aside a variation for the final bar, required to end on the tonic,
while the rest need not follow this pattern. However, I decided that a better solution
would be to use a variation model that only affects rhythms rather than pitch, and so I
implemented the version that appears in the final version, explained in section 3.4.6.

3.2.4 Unification in a Single Pass

The final version of Canon Creator does two passes of MiniKanren; one to associate
notes with beats and another to add rhythmic variation. It occurred to me as I was
implementing the crab and palindrome functionality that a lot of the control flows were
being duplicated and so it could all be done at once. Potentially then, more solutions
could be found because more backtracking would be possible. A possible disadvantage
though is that it could increase the run time since all the variables representing the root
notes would have to be projected out each time they were needed. More analysis would
be needed to conclude whether this trade-off is worth making.

I only considered this approach quite late on in the project and since it involved a refactor
of the majority of my code there was no time to implement it, however if I were to do
this project again I would try this approach first since it would conceptually make more
sense than the current two-pass model.

3.3. THE ALGORITHM 31

Choose a chord progression

Chord Progression

----------- aT

Serialise

Serialised Chord Progression

:cn:f g e :g :a:b :c

oJ - I

Add rhythmic variation

Melody

o

:c :f :g e :g:a:b:c

Figure 3.2: A flowchart of the general algorithm used.
3.3 The Algorithm

This algorithm was originally used and designed by Stefaan Himpe who outlines it in his
blog[15] and I used his ideas to build my own solution. The main stages of the algorithm

are:
1. Choose a chord progression.
2. Serialise the chord progression.
3. Add rhythmic variation.

This general procedure is shown in figure 3.2 and this section explores each stage in more
detail.

32

CHAPTER 3. IMPLEMENTATION

Chord

Progression

I

o[V

lRepeat

Melody

v I

VI

lPlay at different offsets

H

1 v] vl 1o

I|(IV

Canon

I|IV

Time

I

v 1|1V

Figure 3.3: A diagram of how a ch

ord progression ensures note compatibility.

IIVV

0

|

|

ﬁ

_t#—

¢
0
—X
¢

-

Figure 3.4: How chords are ‘serialised’.

3.3.1 Choosing a Chord Progression

The chord progression associates a chord with each beat and is repeated throughout the

piece. It must be some integer number o

f bars in length so that starting voices only after

some integer number of chord progressions means that overlapping beats have the same

associated chord associated, as shown in figure 3.3. The only requirement on the chord

progression is that it ends with V, I which is a perfect cadence, meaning that the piece

will sound ‘finished’ at the end of the piece.

3.3.2 Serialising the Chord Progression

Once every beat has an associated chord,

a single note from the chord is chosen to be the

root note of that beat. This can be described as serialising from the way that the notes

in the stacked chord are spread out between bars (see figure 3.4).

3.4. MY IMPLEMENTATION 33

0 |
) ‘I — _F
(Y & '
0 i . i |
— [[I [P _I
e s o° o e !

Figure 3.5: A melody before and after adding rhythmic variation.

3.3.3 Rhythmic Variation

At this point, a valid canon could be made by playing the root note of each beat for its
whole duration, however this is certainly not rhythmically interesting. This final stage
instead takes each beat and splits it into smaller individual notes to add some rhythmic
variation (see figure 3.5). The first note of the group is the root note, and the others are
chosen with some procedure for finding compatible notes.

3.4 My Implementation

The specific stages that my implementation follows are:

1. Choose parameters for the canon (done by the user and/or the software).
Find the scale for the piece.
Generate a chord progression.

Generate random variables to control the variation.

A

Generate the internal structure of the melody, i.e. an array of bars with arrays of
beats inside each one (figure 3.7).

6. Serialise the chord progression by f